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Abstract— Superpixel segmentation of 2D images has been
widely used in many computer vision tasks. Previous algorithms
model the color, position, or higher spectral information for
segmenting a 2D image. However, limited to the Gaussian imaging
principle in a traditional camera, where each pixel is formed by
summing lots of light rays from different angles, there is not
a thorough segmentation solution to eliminate the ambiguity in
defocus and occlusion boundary areas. In this paper, we consider
the essential element of image pixel, i.e., rays in light space,
and propose light field superpixel (LFSP) to eliminate the
ambiguity. The LFSP is first defined mathematically and then
two evaluation metrics, named LFSP self-similarity and effective
label ratio, are proposed to evaluate the refocus-invariant and
full-sliced properties of segmentation. By building a clique system
containing 80 neighbors in light field, a robust refocus-invariant
LFSP segmentation algorithm is developed. Experimental results
on both synthetic and real light field datasets demonstrate the
advantages over the current state of the art in terms of traditional
evaluation metrics. Additionally, the LFSP self-similarity evalu-
ations under different light field refocus levels show the refocus-
invariance of the proposed algorithm. The full-sliced property
of the proposed LFSP algorithm is verified by comparing it
with the classical supervoxel algorithms. Finally, an LFSP-based
application is demonstrated to show the effectiveness of LFSP in
light field editing.

Index Terms— Light field, superpixel segmentation, refocus-
invariant, LFSP self-similarity, full-sliced, effective label ratio.

I. INTRODUCTION

SUPERPIXEL is the key fundamental to connect pixel-
based low-level vision to object-based high-level under-

standing, which aims at grouping similar pixels into larger and
more meaningful regions to increase the accuracy and speed of
post processing [1]. To accomplish a good over-segmentation,
previous works [2]–[8] have built various grouping methods to
model the proximity, similarity and good continuation [1] in
the classical Gestalt theory [9]. However, existing superpixel
techniques are becoming more and more difficult to meet the
requirements of modern applications. In computer vision, due
to the Gaussian imaging model in traditional imaging system,
there inevitably exist ambiguities in object boundaries where
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Fig. 1. Light field superpixel segmentation on real scene light fields. The left
image is a 2D slice of LFSP segmentation in central view. For each region in
the right, the first row shows the close-up and the second and third rows are
corresponding segmentations on horizontal and vertical EPIs respectively.

the light rays emitted from different objects are accumulated,
including vignette, occlusions. These ambiguities may cause
image degradation to disturb superpixel segmentation and
further to decrease the accuracy of object segmentation and
recognition. In computer graphics, previous techniques are
designed for 2D image and cannot handle the recent 4D
light field data [10]–[12] which has a 2D grid of 2D images.
Each sub-aperture image in light field can only be segmented
independently, so the full 4D light field cannot be edited
simultaneously.

To overcome ambiguities and asynchrony in traditional
superpixel segmentation, we introduce light field superpixel
segmentation. It is known that light field [10], [13], [14]
records scene information both in angular and spatial spaces,
forming a 4D function named L(u, v, x, y). The light field
data can benefit superpixel segmentation on two aspects. First,
since each ray is recorded in light field, the ambiguity in object
boundaries can be well analyzed. Second, multi-view nature
of light field enables the bottom-up grouping not only in the
color and position but also in the structure.
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However, 4D light field segmentation is still a challenging
task. As mentioned in [15], light field segmentation faces
two major difficulties. First, each segmentation in light field
ought to be propagated coherently to preserve the redundancy
of 4D data. Second, although the depth is implicitly embedded
in multi-view images, it is still unavailable, inconvenient and
imperfect to segment the full 4D data.

In this paper, we explore superpixel segmentation on
4D light field. We show that the LFSP can represent proximate
regions better, especially in object boundaries (in Section III).
Traditional superpixel is just a 2D slice of LFSP by fixing
angular dimensions. When fixing spatial dimensions, the angu-
lar segmentation in LFSP coincides with light field occlusion
theory in [16]. Additionally, LFSP differs from supervoxel in
definitions and assumptions.

In Section IV-A, we first propose a refocus-invariant LFSP
segmentation algorithm by defining a clique system containing
80 neighbors in light field and introduce a 2D disparity
map into the energy function. Then, two metrics, namely the
LFSP self-similarity and effective label ratio, are proposed to
evaluate refocus-invariant and full-sliced properties of seg-
mentation. In Section V, extensive experiments are carried
on synthetic data and real scene light fields captured by
Lytro [11]. Quantitative and qualitative comparisons verify the
effectiveness and robustness of our algorithm.

This is an extended version of the work at CVPR [17].
Compared with the conference paper, we analyze the differ-
ences between the proposed LFSP and the classical video
supervoxel algorithms both in theory and experimental perfor-
mance. Based on theoretical analysis, a new metric is designed
for evaluating LFSP segmentation. Additionally, a new light
field dataset is generated to show the differences better. Apart
from the comparison with supervoxel, we also provide a
deeper analysis on LFSP segmentation with more parameters
and add more results both on synthetic and real light fields.
Finally, a LFSP based application is demonstrated, showing
the effectiveness of LFSP in light field editing.

In summary, our main contributions are,
1) The definition of light field superpixel.
2) Two evaluation metrics, namely the light field self-

similarity and effective label ratio, are proposed for eval-
uating refocus-invariant and full-sliced properties of LFSP
segmentation.

3) A robust refocus-invariant superpixel segmentation algo-
rithm in the full 4D light field, which provides consistent
segmentation for a same light field under different refocus
levels.

4) A 4D light field segmentation dataset benchmark, which
has more non-Lambertian object classes and a larger absolute
disparity range.

II. RELATED WORKS

A. Light Field in Computer Vision

Unlike conventional imaging systems, light field
cameras [11], [12] can record the appearance of objects
in a higher 4D space, and have benefited many problems in
computer vision, such as depth and scene flow estimation [16],

[18], [19], saliency detection [20], super resolution [21] and
material recognition [22]. Light field can generate depth
map [16], [18], [23] from multiple cues such as epipolar
lines, defocus and correspondence [23]. Compared with
traditional multi-view stereo based matching methods, light
field based methods can provide a high quality sub-pixel
depth map, especially in occlusion boundaries. In this work,
the algorithm developed by Zhu et al. [24] is utilized to
generate depth map for LFSP segmentation.

For light field segmentation, only a few of approaches have
been proposed in literatures, especially most of them are
interactive. Wanner et al. [25] proposed GCMLA (globally
consistent multi-label assignment) for light field segmentation,
where the color and disparity cues of input seeds are used
to train a random forest, which is used to predict the label
of each pixel. Mihara et al. [26] improved the GCMLA by
building a graph in 4D space. A ‘4-neighbouring system’ in
light field is defined and the 4D segmentation is optimized
using the MRF. Hog et al. [27] exploited light field redundancy
in ray space by defining free rays and ray bundles. A simplified
graph-based light field is constructed, which greatly decreases
computational complexity. Xu et al. [28] segmented 4D light
field automatically. By defining the LF-linearity and occlu-
sion detector in light field, a color and texture independent
algorithm for transparent object segmentation is proposed.
Compared with previous segmentation algorithms, our work
focuses on a smaller unit – the superpixel in light field, which
is the basis for many computer vision tasks [1], [20], [29]–[33].
More recently, Hog et al. [34] proposed super-rays for light
field processing. The 2D grids of central view are projected to
4D light field according to the disparity. Then the whole 4D
hyper volume is optimized in an iterative k-means clustering
framework using the color and position (similar to [7]), which
results in high computational complexity. In fact, it is not
necessary to optimize the segmentation from 4D volume. Since
2D images in different views are correlated by the disparity,
we only need to project 2D segmentation to 4D light field and
optimize boundary pixels.

B. Superpixel Segmentation

Superpixel segmentation of 2D image has been researched
for years and many excellent algorithms have been pro-
posed. Shi and Malik [2] treated the image as a
2D graph using contour and texture cues. They proposed
normalized cuts to globally optimize the cost function.
Felzenszwalb and Huttenlocher [3] improved the efficiency
of normalized cuts using an efficient graph cuts method.
Liu et al. [35] introduced an entropy rate term and balance
term into a clustering objective function to preserve jagged
object boundaries. Achanta et al. [7] adapted a k-means
clustering algorithm to seek cluster’s center iteratively.
Li and Chen [8] mapped traditional color and position features
into a higher spectral space to produce more compact and
uniform superpixels.

III. LFSP DEFINITION

All previous superpixel approaches are built on traditional
2D image and are not suitable for 4D LFSP segmentation.
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Fig. 2. (a) All rays emitted from P1, P2 to p1, p2 are contained in the LFSP. (b) The rays emitted from P1, P2 converge to p1, p2, forming two defocus
areas centered at p′

1, p′
2 respectively. p3 suffers from rays emitted from both P1 and P2. (c) There is an obstruction between the background and the main

lens, and part of the rays emitted from the green point P1 are occluded by the blur obstruction. There is an ambiguity in the segmentation for these mixed
points here.

Although 4D light field can be treated as a serial of
2D images and each image can be segmented using these algo-
rithms, ignoring the connection between these images not only
cuts off segmentation consistency but also increases running
time (Fig.17).

In contrast to previous superpixel segmentation algorithms,
we treat 4D light field as a whole and improve the accuracy
and running time of LFSP using angular coherence in light
field. In this section, we first present the definition of light field
superpixel (LFSP). Then the differences and characteristics of
LFSP compared with traditional 2D superpixel and supervoxel
are analyzed.

A. LFSP Definition

Superpixel algorithms model the proximity, similarity and
continuation of the object in a 2D image. We ray-trace the
pixels in the superpixel from a 2D image to the 3D space
(see Fig.2a). In the propagation, each pixel spreads into
multiple light rays and reaches the object in the real world.
In this case, all rays are included in the LFSP.

The inverse propagation mentioned above can only model
all-in-focus and non-occlusion situations, however the follow-
ing two conditions are difficult to achieve actually. First, when
the camera is focusing on a different depth (Fig.2b), defocus
blurs occur on the sensor and original sharp boundary is
blurred. Since the boundary pixel suffers rays emitted from
different objects, it is ambiguous to segment it. Second, for
the occlusion case (Fig.2c), when the camera is focusing
on the background, a part of light rays emitted from the
background point are occluded by foreground obstruction.
As a result, the converged point on the imaging sensor is
a mix of these rays – part from the background and part
from the obstruction, which makes it difficult to segment
the pixel. Fortunately, light field camera records all rays
emitted from the physical world such that the defocus and
occlusion cases can be well segmented in ray space using
the LFSP.

Based on the above-mentioned analysis, we give the defin-
ition of LFSP as follows.

Definition 1: The LFSP is a light ray set which contains all
rays emitted from a proximate, similar and continuous surface
in 3D space.

Mathematically, supposing R is a proximate, similar and
continuous surface in 3D space and the recorded light field is

Fig. 3. The upper part shows light ray intensity distributions in defocus and
occlusion cases in the EPI respectively. The lower part shows corresponding
pixel intensity distributions in traditional 2D image.

L(u, v, x, y), the LFSP sR(u, v, x, y) is defined as,

sR(u, v, x, y) =
|R|⋃
i=1

L(u Pi , vPi , x Pi , yPi ), (1)

where L(u Pi , vPi , x Pi , yPi ) ⊆ L(u, v, x, y) is the recorded
light field from i -th point Pi in the surface R. | · | denotes
the number of elements in the set.

B. Properties

1) Ambiguity Elimination: The LFSP eliminates the defocus
and occlusion ambiguities essentially. In Fig.3, the object
boundary is blurred in traditional 2D image (the bottom row)
since all rays are accumulated in a same pixel. However,
since all rays are recorded in light field, object boundaries are
distinguishable in light ray space and can be well analyzed
(the top row).

2) Limiting Cases: The definition above describes generic
4D LFSP and it can be reduced to 2D spatial or angular case
by taking appropriate limits. On the one hand, considering
fixing angular dimensions (u, v) → (u∗, v∗), the 4D LFSP
reduces to a 2D superpixel segmentation su∗,v∗

in the (u∗, v∗)
view. On the other hand, if spatial dimensions (x, y) are fixed,
the 4D LFSP reduces to an angular segmentation. When light
field is refocused to a specific depth, the segmentation is a
reference to determine the occlusion (see Fig.4). If all rays
in sR(u, v, x∗, y∗) share a same label, there is no occlusion
here and all views can be used to improve depth estimation.
If sR(u, v, x∗, y∗) is segmented into two or more regions,
the views sharing same label with central view are unoccluded
views and others are occluded views. It coincides with light
field occlusion theory [16], [24].
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Fig. 4. The limiting case when fixing spatial dimensions. p is an occlusion
boundary point. (a) Light field is refocused to the background, and only a
few of views can observe p. The green rays belong to the background LFSP
and blue rays belong to another LFSP. (b) The angular segmentation by fixing
spatial dimensions of p. It can be seen that blue and green regions are occluded
and unoccluded views respectively.

Fig. 5. Comparison of LFSP and supervoxel segmentation. Square boxes
show the scaled patches of central view in our collected light fields. Right
four rectangles are vertical EPI of light field, LFSP segmentation and the
supervoxel segmentations of SLIC [7] and TSP [30], respectively. Different
colors in segmentations represent different LFSP/supervoxel labels.

3) LFSP vs Supervoxel: There are two differences between
LFSP and supervoxel. The first one is the ’full-sliced’ property.
In LFSP, the light rays emitted from a similar area should
belong to a same LFSP. In other words, there are 2D slices
of LFSP in all views of light field in free space (i.e. without
occlusion). However, this ‘full-sliced’ property is not guaran-
teed in supervoxel which just describes a similar 3D volume in
the video. Although the 2D slices of LFSP in different views
describe a same object, they are unavoidably cut into multiple
supervoxels when the number of views, i.e. the number of
video frames is large enough. Fig.5 shows this difference.
It is noticed that, a same LFSP is further cut into multiple
supervoxels in different times. The second is different role of
disparity or optical flow information. In supervoxel, optical
flow can only be used to link neighboring frames. However,
the disparity is also a basic attribute of pixel to distinguish
different objects in LFSP segmentation.

All these two differences come from different definitions
and assumptions of LFSP and supervoxel. Because light field
describes a static scene, LFSP should contain all light rays
emitted from a same area and the disparity plays a similar
role as the textures in LFSP segmentation. Instead of static
scene, the video describes dynamic scene at different time.
Due to the motion assumption of objects with time, there is
no guarantee that superpixel will appear in all frames and the
disparity (or optical flow) should not be used to help each
in-frame segmentation.

IV. APPROACHES

According to the definition of LFSP, each ray in the LFSP
ought to be refocus-invariant, i.e., the label of each ray

should be unchangeable during the refocus operation, since
the point in 3D space is unchangeable and light field itself
is not changed.1. Apart from this, the LFSP segmentation
should be full-sliced, i.e., the LFSP should have 2D slices
in all views of light field in free space. It is important to have
a full-sliced LFSP segmentation in light field editing, where
it is desirable to use few operations to propagate the editing
from current view to full light field. To achieve these goals,
we design the following refocus-invariant algorithm for LFSP
segmentation.

A. Refocus-Invariant LFSP Algorithm

The nature of refocus is to shear pixels in each view [23],
i.e., only the disparity map of each image adds/subtracts with
a constant value which is related to refocus level, while the
content of each sub-aperture image does not change. To make
the LFSP refocus-invariant, the disparity should be removed
in the measurement of position distance.

Since it is difficult to obtain the disparity map for a full light
field, in the proposed algorithm, a 2D disparity map du0,v0 for
central view (u0, v0) is obtained using occlusion-model guided
anti-occlusion depth estimation algorithm [24]. To propagate
the disparity from (u0, v0) to other views, the LFSP is modeled
as a slanted plane in the disparity space. Suppose that πi =
(Ai , Bi , Ci ) assigns a plane function to the i -th LFSP si ,
the disparity of p = (u, v, x, y) ∈ si can be computed
as,

d̂(p, πi ) = Ai x + Bi y + Ci

1 + Ai (u − u0) + Bi (v − v0)
. (2)

Please refer the Appendix A for detailed proof.
The full energy function is defined as,

E(s, π, o)

=
∑
u,v

∑
p

(
Ec(p, su,v

s(p))+λp E p(p, su,v
s(p))

)
+λd

∑
p

Ed (p, πs(p))

+ λs

∑
(i, j )∈Nseg

Es(πi , π j , oi, j )+λb

∑
(p,q)∈N80

Eb(s(p), s(q)),

(3)

where s is the segmentation in the full 4D light field and su,v

is the 2D slice of 4D LFSP in the view (u, v). s(p) denotes the
label that assigns to a pixel p. The o records the connection
type between two neighboring LFSPs.

In Eqn.3, the terms Ec, E p and Ed measure the color, posi-
tion and disparity distance between the pixel p and superpixel
center respectively. The term Es measures the connectivity
between two LFSPs in disparity space. Last but not least,
the term Eb measures the 2D slice shape and the connectivity
between each 2D slice superpixel su,v , which ensures that
the LFSP is refocus-invariant.

1Noting that, because the recorded light field may be focused at different
depth for a same scene, the refocus-invariance guarantees that the LFSP
segmentation is always consistent with the view consistency no matter what
the focus level is.
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The color, position and disparity energy terms are defined
as follows.

Ec(p, su,v
s(p)) =

∥∥∥L(p) − csu,v
s(p)

∥∥∥2

2
,

E p(p, su,v
s(p)) =

∥∥∥p − μsu,v
s(p)

∥∥∥2

2
,

Ed(p, πs(p)) =
∥∥∥∥∥

du0,v0(p) − d̂(p, πs(p))

max(du0,v0) − min(du0,v0)

∥∥∥∥∥
2

2

, (4)

where csu,v
i

and μsu,v
i

denote the color and position centers
of the 2D slice su,v

i respectively. L(p) denotes the color of
pixel p (the CIE-Lab color space is used here). The disparity
term only works for central view image and it is normalized.

The smoothness term encourages the slanted planes of
neighboring LFSPs (Nseg) to be similar. Like [36], it contains
three types of LFSP boundaries, i.e., the occlusion, hinge and
co-planar, defined as,

Es(πi , π j , oi, j )

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 oi, j = occ
1

|Bi, j |
∑

p∈Bi, j

(d̂(p, πi ) − d̂(p, π j ))
2 oi, j = hi

1

|si ∪ s j |
∑

p∈si∪s j

(d̂(p, πi ) − d̂(p, π j ))
2 oi, j = co,

(5)

where Bi, j is the set of boundary pixels between si and s j .
There are two major functions in the boundary term, cor-

responding to two different types of neighboring systems in
light field, i.e., spatial and angular neighboring systems. Addi-
tionally, these two types of neighboring systems are mixed to
control full shape of 4D LFSP. For a 4D ray p = (u, v, x, y)
in light field, supposing its disparity is d̂(p), there are 8 pixels
in its spatial and angular neighboring systems respectively,

Nspa(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u, v, x ± 1, y + 1)

(u, v, x ± 1, y − 1)

(u, v, x, y ± 1)

(u, v, x ± 1, y)

Nang(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u ± 1, v + 1, x ± d̂(p), y + d̂(p))

(u ± 1, v − 1, x ± d̂(p), y − d̂(p))

(u ± 1, v, x ± d̂(p), y)

(u, v ± 1, x, y ± d̂(p)).

(6)

Apart from Nspa and Nang , there is also a mixed neigh-
boring system Nmix containing 64 rays in both spatial and
angular domains simultaneously (see Appendix B). Fig.6 gives
an illustration of these neighboring systems. (Noting that, all
float values are rounded to integer in our implementation.)

In total, there are 80 rays (N80) in p’s neighboring system.
Thus, the boundary term is defined as,

Eb(s(p), s(q))=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 s(p) = s(q)

E pens s(p) �=s(q), Npq is spatial

E pena s(p) �=s(q), Npq is angular

E penm s(p) �=s(q), Npq is mi xed,

(7)

Fig. 6. An illustration of neighboring systems in light field. In the EPI space
(the red lines are epipolar lines), for a pixel p = (u0, x0), blue rays p1 and
p5 are spatial neighbors, green rays p3 and p7 are angular neighbors, and
orange rays p2, p4, p6 and p8 are mixed neighbors.

Algorithm 1 The LFSP Segmentation Algorithm

where the penalty E pens in spatial neighbouring system
encourages 2D slice su,v

s(p) to be regular, preferring straight
boundaries. The penalty E pena

in angular neighboring system
encourages 2D slice of LFSP to be ‘regular’ in epipolar plane,
i.e. pixels in a same epipolar line share same LFSP label.
It is the core to connect each 2D spatial slices of LFSP.
Since the disparity is removed here, this term makes the LFSP
to be refocus-invariant. The third penalty E penm

in mixed
neighboring system encourages spatial 2D slice of LFSP to
be regular in other views.

Remark: Reviewing the energy function, the refocus-
invariance is guaranteed since (1) the 2D slices of LFSP
in different views are segmented independently just using
local 2D image information (Ec, E p, Ed ); and (2) angular
penalty (E pena

) in the boundary term encourages similar slices
to connect together according to the disparity. Additionally,
the central view and boundary view is connected by a cascade
angular and mix neighboring systems although the disparities
are float values.

The full LFSP algorithm is summarized in the Algo.1.
At first, a 2D depth map of central view du0,v0 is calculated
using [24] (line 1). Then an initial segmentation for 4D light
field is obtained (lines 2-14). Finally, the LFSP result is
optimized by minimizing the Eqn.3 (line 15-16) using the
Block Coordinate Descent (BCD) algorithm [36]. Since the
BCD algorithm only guarantees to converge to a local optima,
a good initial value is in need. First, an initial superpixel
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Fig. 7. An illustration of the self-similarity. The 2D slice of i-th LFSP
in the view (u−1, v0), (u0, v0) and (u1, v0) are marked in blue, red, green

respectively. Then s
u−1,v0
i and s

u1,v0
i are projected to central view, and μ−1,

μ1 are the projected centers. μ0 is the center of su0,v0
i .

segmentation su0,v0 of central view is obtained by embedding
the disparity map du0,v0 into the SLIC framework. Then
the position and disparity centers of each superpixel μs

u0,v0
i

and d̄s
u0,v0
i

are calculated and used to project su0,v0 to 4D
light field using Eqn.9 (lines 3-9). For each non-labeled pixel
in other views, it is assigned as the nearest pixel’s label
(lines 10-14). Compared with [36], the added angular bound-
ary term in Eqn.7 is indiscriminately calculated with spatial
boundary term at the same time.

B. Evaluation Metrics

Existing evaluation metrics for superpixel segmentation con-
centrate on boundary adherence, such as under-segmentation
error (UE), boundary recall (BR) and achievable segmentation
accuracy (ASA) [35]. There is no proper metrics for the spe-
cific refocus-invariant and full-sliced properties. To measure
these features, we propose the LFSP self-similarity and the
effective label ratio.

1) Self-Similarity: The self-similarity SSi of the i -th LFSP
is defined as,

SSi = 1

Nuv − 1

∑
u,v

∥∥∥μH(su,v
i ,d,u,v,u0,v0)

− μs
u0,v0
i

∥∥∥
2
, (8)

where Nuv is angular sampling number of light field. su,v
i is a

2D slice of i -th LFSP in the (u, v) view and (u0, v0) is central
view of light field. μs denotes the position center of superpixel
s and H (su,v

i , d, u, v, u0, v0) projects 2D superpixel su,v
i from

the (u, v) view to (u0, v0) according to ground truth disparity
map d . For each pixel p = (u, v, x, y)	 ∈ su,v

i , the projected
coordinate p′ = (u0, v0, x ′, y ′)	 is defined as (in homoge-
neous coordinate),⎛

⎜⎜⎜⎜⎝

u0
v0
x ′
y ′
1

⎞
⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

0 0 0 0 u0
0 0 0 0 v0

−d(p) 0 1 0 u0d(p)
0 −d(p) 0 1 v0d(p)
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H(su,v

i ,d,u,v,u0,v0)

⎛
⎜⎜⎜⎜⎝

u
v
x
y
1

⎞
⎟⎟⎟⎟⎠ . (9)

We also give an intuitive explanation of above definition.
For a light field (Fig.7) with 1×3 angular resolution, the slices
su−1,v0

i and su1,v0
i of i -th LFSP are projected to central

view according to ground truth disparity. The new centers
of the projected su−1,v0

i and su1,v0
i are denoted as μ−1 and

μ1 respectively, and the center of su0,v0
i is μ0. The mean

of ‖μ1 − μ0‖2 and ‖μ−1 − μ0‖2 is the self-similarity of the
i -th LFSP.

For a full segmentation in 4D light field, the LFSP self-
similarity SS is defined as the mean of all SSi ,

SS = 1

K

K∑
i=1

SSi , (10)

where K is the number of LFSP.
From the definition, the LFSP self-similarity is measured

as pixel unit and a low SS value implies a high refocus-
invariance. Apart from this, since the disparity changes with
the refocus level, the LFSP self-similarity can measure the
refocus-invariance of LFSP segmentation accurately.

2) Effective Label Ratio: As analyzed in Sec.III-B.3, one of
the main differences between the LFSP and traditional super-
voxel is the ‘full-sliced’ property, i.e., the 4D LFSP should
have the corresponding 2D slices in all views. To measure
this property, the effective label ratio (ELR) is proposed and
defined as,

E L R = Ku0,v0

K
, (11)

where Ku0,v0 is the number of LFSP in the central view of
light field. A larger ELR implies better full-sliced.

ELR is an important evaluation metric for light field editing.
A larger ELR indicates that less operations are needed in
order to propagate the edit from current view to full light
field. On the contrary, a smaller ELR shows that there are
missing regions in some views, resulting in more operations
to be applied for light field editing.

V. EXPERIMENTAL RESULTS

We compare the proposed LFSP segmentation with
state-of-the-art superpixel segmentation algorithms including
SLIC [7] and LSC [8]. Noting that, the results of SLIC come
from the vlfeat [37] library, and the code of LSC comes from
the author’s website. Apart from superpixel segmentation, two
classical supervoxel algorithms, SLIC [7] and TSP [30], are
also compared. The SLIC supervoxel algorithm only uses color
cues while TSP algorithm also uses optical flow. All superpixel
algorithms are evaluated both on synthetic data and real
scene light fields while supervoxel algorithms are only tested
on synthetic data.. For synthetic data, the HCI benchmark
light field datasets [38] are used, which consist of four light
fields with ground truth depth and segmentation. Each data
includes a 9×9 (angular resolution) light field. We additionally
generate other six light fields with ground truth disparity map
and segmentation using the Blender [39], to better evaluate
the performance of the proposed algorithm. Compared with
previous data, our synthetic light fields contain more objects
(4 to 6 objects in HCI data and 7 to 10 objects in our data)
and introduce more non-Lambertian scenes (glass or mirror
type objects). Apart from these, our light fields have a larger
absolute disparity range (4 pixels in HCI data and 7 pixels
in our data), which helps to compare different supervoxel
algorithms better. The real scene light fields are captured
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Fig. 8. Quantitative evaluation of LFSP with different depth weights λd .

Fig. 9. Quantitative evaluation of LFSP with different E pena .

by a consumer light field camera Lytro. The 4D light field
data are extracted using the LFToolbox [40]. The quantitative
evaluation contains the UE, BR, ASA [35], running time,
LFSP SS and ELR. All evaluations are conducted on synthetic
data since ground truth disparity map and segmentation are
not available in real scene data, and so far, there is no light
field segmentation benchmark in real scene data like classical
Berkeley segmentation database [41]. The codes and synthetic
light fields are available at [42] now.

A. Synthetic Scenes

1) Performance vs Parameters: The full 4D LFSP differs
from traditional 2D image superpixel in two aspects: (1) The
disparity map is always required instead of optional; and
(2) The 2D slice superpixels in different views are tightly
connected together instead of irrelevant. For the first point,
we verify the LFSP with different depth weight λd . For
the second one, the key parameter E pena , which connects
similar 2D slices, is evaluated with different values. Other
parameters such as λp , λs and λb have been discussed in
previous papers [7], [36] and will not be discussed here.

a) Depth weight λd : Fig.8 demonstrates evaluations of
LFSP segmentation with different λd ranging from 1 to 1000.
It can be seen that 7 lines are approximately coincident in the
statistics of boundary adherence (Fig.8a,8b,8c). The λd has
no effect on boundary adherence because each 2D slice of
LFSP is segmented independently just using local 2D image
information Ec,, E p , Ed (in central view only). In Fig.8d,
the LFSP SS decreases as λd decreases. In most cases,
color and position terms can segment the image well. The
disparity term not only fails to improve boundary adherence,
but also increases the LFSP SS since only disparity map of the

central view is utilized. However, this term cannot be ignored
since previous color and position terms cannot segment object
boundaries with similar textures (see Fig.11).

b) Angular neighbour penalty E pena : Fig.9 shows com-
parisons on different penalty E pena in angular neighboring
system. It can be seen that both boundary recall and the LFSP
SS decrease with the increase of E pena . It is understandable
that BR and LFSP SS are contradictory in the case of E pena .
Assuming there are only color and position terms in Eqn.3,
all 2D slice superpixels in different views can fit boundaries
tightly. When the boundary term is applied, especially the
penalty in angular neighborhood, these 2D superpixels will
“pull” boundary pixels in other views. The strength of this
“pull” increases as E pena increases, which makes boundary
adherence decrease correspondingly.

2) Influence of Disparity Maps:

Disparity quality: Five estimated disparity maps from
different algorithms [16], [24], [43]–[45] and ground truth are
used to test our LFSP algorithm. Table I shows the RMS errors
of state-of-the-art light field depth estimation algorithms, and
Fig.10 demonstrates evaluations on different disparity maps.
In general, the LFSP segmentation benefits from a good
disparity map.

3) Ambiguity Elimination: Fig.12 demonstrates the compar-
ison of the proposed LFSP with traditional SLIC and LSC
algorithms on the defocused area. It is noticed that, the SLIC
and LSC cannot accurately find the object boundaries in these
areas due to the defocus blur, the superpixel boundaries are
always cling with the circle of confusion, such as the red
dot or the blue car frame. However, because the LFSP focuses
on the segmentation of the light ray instead of the images
cumulated by multiple light rays, it eliminates the ambiguities
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Fig. 10. Quantitative evaluation of LFSP with different disparity maps.

Fig. 11. The segmentation on Horses with the change of λd . There are two
horses here, however it is hard to distinguish them due to similar textures.
It can be seen that the boundary is preserved better with a larger depth
weight λd .

TABLE I

RMS ERRORS OF DIFFERENT DEPTH ESTIMATION

ALGORITHMS ON HCI DATA [38]

Fig. 12. Segmentation comparison on the defocused area.

TABLE II

PARAMETERS SETTING

in defocus and occlusion boundaries. In Fig.12, the proposed
LFSP segmentation algorithm segments boundaries of the red
dot and blue car frame accurately.

4) Adherence to Boundaries: Unless otherwise stated,
the pre-set parameters for all experiments are listed in Table II.
Apart from λd and E pena , λp balances the effect between the
position and color distance and a larger λp leads to a more

well-shaped superpixel. λs controls slanted plane function and
it is mainly decided by initial disparity map. Since state-of-the-
art depth estimation algorithms [16], [18], [23] always over-
smooth occlusion boundaries, it is suggested to assign a small
value to make the plane function more stable. For boundary
terms E pens and E penm , small values are assigned, trying
to encourage straight boundaries. λb balances the boundary
adherence and shape. The boundary adherence decreases with
the increase of λb.

Fig.13a-13c show quantitative results which are average
values on the HCI segmentation datasets. It can be seen that
the proposed LFSP algorithm obtains competitive results (red
lines) over state-of-the-art algorithms (green and blues lines)
in all three traditional metrics. Qualitative results are shown
in Fig.15, from which we can see that the LFSP segmentation
can produce more regular superpixels in occlusion boundary
areas (the buddha in the first row and the butterfly in the second
row). Fig.14 and 16 show quantitative and qualitative results
on our synthetic light field data, respectively. Our algorithm
also achieves competitive results compared with previous
approaches. For example, in the first row of Fig.16, only the
proposed algorithm preserves the boundaries of grey points in
the dice well, while these areas are over-segmented or under-
segmented in the results of SLIC and LSC. In the bottom
row, the comparison is more obvious in the boundaries of the
leaves.

Additionally, evaluations of initial value (the LFSP segmen-
tation without BCD optimization) are also plotted in Fig.13
(black lines). It can be seen that the optimized segmentation
is far superior to initial one, showing the effectiveness of
optimization. In the fourth column of Fig.15, segmentation
results in 4D space are partly exhibited. For each local region,
the first row shows initial results and the second row shows
the optimized results. Due to the occlusion, many pixels are
assigned with wrong labels and segmentation boundaries do
not agree with object boundaries in the EPI space at initial
stage. After the optimization, these errors are amended and
occlusion boundaries are preserved well.

5) LFSP Self-Similarity: Apart from these traditional eval-
uation metrics (i.e., BR, UE and ASA), we also evaluate
the LFSP using the LFSP SS. Since there is no previous
work on light field superpixel segmentation, it is unfair to
directly compare it with traditional 2D superpixel segmen-
tation. We refocus light field for 7 times (the refocus level
1 − 1

α varying in −1.5,−1,−0.5, 0, 0.5, 1, 1.5) and segment
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Fig. 13. Quantitative evaluation of different superpixel segmentation algorithms on HCI synthetic light field data [38].

Fig. 14. Quantitative evaluation of different superpixel segmentation algorithms on our synthetic light field data.

Fig. 15. Segmentation results on HCI synthetic light field data [38] (the superpixel size is 20). The first column shows central view of input light field.
The second to fourth columns show the results of SLIC, LSC and the proposed algorithm respectively. For each region in our results (the right-most column),
the upper row shows initial segmentation in the EPI space, and the lower row shows the optimized segmentation result.

them. Then the LFSP SSs on each segmentation are plotted
in Fig.13d and 14d. It can be seen that the curves always
maintain at a low level and all values are smaller than 1 pixel,

which shows good refocus-invariance of the proposed LFSP
algorithm. Furthermore, the curves are very close to each other,
which indicates the stability of our LFSP algorithm.
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Fig. 16. Segmentation results on our synthetic light field dataset (the superpixel size is 20). For each region in our results (the right-most column), the first
and second rows show the segmentation in the horizontal and vertical EPIs respectively.

Fig. 17. Running times of different algorithms on HCI and our synthetic
light field data.

6) Running Time: Fig.17 shows the running time of dif-
ferent algorithms on HCI and our light field data respectively.
Noting that, because the disparity map is considered as a basic
property of the input light field for post editing tasks [15]
and can be pre-computed, its running time is not counted
in our results in Fig.17. All algorithms are evaluated on
the same desktop computer with a 3.4 GHz i7 CPU. For
HCI data, there are 768 × 768 pixels in each sub-aperture
image. Our data contains 760 × 760 or 720 × 1024 pixels
in each sub-aperture image. The time of SLIC and LSC are
the sum of time costs that are taken on each view image
of light field by the two algorithms respectively. It can be
seen that our un-optimized Matlab/C implementation shows
great advantages over previous works with the increasing of
superpixel size since the 4D light field is treated as a whole
instead of multiple independent images. Besides, the BCD
algorithm just iteratively optimizes boundary pixels in the
LFSP segmentation, which decreases the complexity a lot.

B. Real Scenes

Fig.1 and 19 show experimental results on real scene light
fields, captured by a Lytro camera (the superpixel size is
set as 20 here). Due to low signal-to-noise ratio of Lytro
camera, the SLIC and LSC algorithms cannot produce reliable
results from single image of central view. However, due to
the introduction of angular neighboring system, the proposed
LFSP algorithm can produce more convincing results. Com-
pared with the SLIC and LSC, our algorithm can generate
superpixels with more regular shapes (the stone bench in
the first row and the leaves in the second row) and more
similar size (the trash can in the third row and the plant

Fig. 18. Comparison of LFSP segmentation under different illuminations.

in the fourth row). Apart from this, occlusion boundaries
in the EPI space are also preserved well. The segmentation
boundaries can always cling occlusion boundaries or remain
the same direction with EPI lines, which verifies good LFSP
self-similarity of the proposed algorithm.

Although the proposed LFSP also outperforms SLIC and
LSC in real light fields, the qualitative results are not as good
as the results of synthetic data shown in Fig.15. This is due
the low signal-to-noise ratio of the Lytro camera. In Fig.18,
the segmentation comparisons under both the low and high
illuminations are provided. In low light environment, the EPI
consistency is broken due to the noise, so the results are worse
than those of high light environment. It is suggested to record
light fields in high illumination environment to obtain good
LFSP segmentations.

In Fig.20, segmentation results under different refocus levels
(−0.5, 0, 0.5) are demonstrated. It can be seen that although
the direction of EPI lines changes with different refocus levels,
segmentation boundaries always agree with object boundaries,
which further validates good refocus-invariance of the pro-
posed algorithm.

C. LFSP vs Supervoxel

As the 4D light field can also be treated as 3D videos
and following be segmented using the supervoxel algorithms,
to fairly compare the performance of the proposed LFSP algo-
rithm and the traditional supervoxel algorithms, we organize
the 3D video from the 4D light field using two different orders,
namely the row first (RF) and column first (CF), respectively.

1Noting that it is a mean ratio, the ELR on the Buddha is 0.999 while others
are all 1.000.
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Fig. 19. Segmentation results on real scene light fields. For each region in our results (the right-most column), the upper and lower rows show the segmentation
in the horizontal and vertical EPIs respectively.

Fig. 20. Segmentation results of real scene light fields under different refocus levels. The first column shows central view of input light field. The second
to fourth columns show the results under different refocus levels (−0.5, 0, 0.5) respectively.

Tab.III shows the quantitative comparison of LFSP and
supervoxel algorithms on HCI and our light fields. The terms
’HCI’, ’Ours’ and ’Both’ refer to the results on HCI light

fields, our light fields and mean of two datasets. Since there
is little difference in BR, UE, ASA and SS between the seg-
mentation results on HCI and our light fields, the mean results

Authorized licensed use limited to: Tencent. Downloaded on December 25,2021 at 12:29:05 UTC from IEEE Xplore.  Restrictions apply. 



96 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

Fig. 21. LFSP segmentation vs supervoxel segmentation. For each scene, the right square patches are zoom-in of red/green boxes. To the right of each
scaled patch, the first and second rows are the horizontal and vertical EPIs, respectively. From left to right, original EPIs, LFSP segmentations, SLIC and TSP
supervoxel segmentations. The terms ’RF’ and ’CF’ refer to two types of order of different views in video, namely the row first and column first, respectively.

TABLE III

RESULTS COUNTING ON SYNTHETIC LIGHT
FIELDS (LFSP VS SUPERVOXEL)

are listed. On classical boundary adherence metrics (BR, UE,
ASA), LFSP achieves slight advantages. The performance of
LFSP improves in SS counting. Since there is no optical flow
constraint, SLIC has a high SS value. TSP has a smaller SS
than SLIC due to the use of optical flow. In the ELR counting,
LFSP achieves 100% on both datasets while SLIC and TSP
have small values. SLIC failed in ELR since only color and
position are utilized. Because of the view by view optical flow
calculation which is prone to noise, it is difficult to build the
angular connection between the first and last views in light
field, and TSP has a low ELR value. In addition, it is noticed
that the ELR values of SLIC and TSP decrease a lot from
HCI to our light fields. The main reason for this phenomenon
is that our light fields have a larger absolute disparity, which
increases the difficulty to build angular connections.

Considering the ’full-sliced’ property cannot be well
demonstrated in the HCI light fields due to the small absolute
disparity, we only plot the qualitative comparisons on our light
fields (see Fig.21). Since only color and position of video are
utilized, a same LFSP is cut into multiple LFSP fragments in
time axis and the EPI consistency is severely damaged. TSP
provides good segmentation when the orientation of EPI agrees
with the view order in video organization, in other words,
it achieves good results in horizontal (vertical) EPI when the
video is organized using row (column) first rule. However,
the EPI consistency is undetermined on another orientation
EPI. The main reason is that optical flows have a same
direction and small values in a same angular row (column)
in light field, while the direction changes and optical flow
values increase a lot between the end of current angular row
(column) and the first of next angular row (column) in light
field. Compared with SLIC and TSP, the angular connections
in both horizontal and vertical EPIs are built at the same
time in LFSP, so the EPI consistencies in both horizontal and
vertical EPIs are protected.

D. Limitations

In experiments, we find that our algorithm cannot han-
dle specular (i.e., non-Lambertian) or cluttered regions well
(see Fig.22). For specular areas, since the captured scene
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Fig. 22. Limitations. These two results demonstrate the LFSP segmentations
on specular and cluttered areas respectively. For each rectangle in the subfig-
ure, red is the input data, green is ground truth, blue is the LFSP segmentation
and purple is the comparison of the LFSP and ground truth. The most-right
column refers to the segmentations/comparisons in horizontal or vertical EPI
spaces.

Fig. 23. LFSP based re-color. (a) The central view of input light field.
(c) The 2D slice of LFSP segmentation in central view. (b), (d) The light
fields after re-coloring the fruits and leaves.

may be affected by the light (e.g., metal materials) or neigh-
boring scenes (e.g., mirror type objects) (see Fig.22a),
the color or depth cues are not reliable and boundaries of
these objects cannot be segmented well. For cluttered regions,
because there are too many small objects which are often
much smaller than the given superpixel size (see Fig.22b), it is
unavoidable to include many small objects in the segmented
superpixel. These two challenge issues are also not solved well
by traditional algorithms.

E. Extended Application

With the help of LFSP, full light field can be edited with
only one operation. Fig.23 demonstrates the LFSP based re-
color, where the light field is captured using the Lytro Illum
camera. The color of fruits and leaves in all views are adjusted
by simply changing the HSV of related LFSPs.

Fig. 24. By fixing (v, y) as (v0, y0), the epipolar plane image appears.
(u0, x0) is a ray in central view and (u, x) is the correspondence in the
(u, v0) view. (u0, x0) and (u, x) share a same epipolar line.

VI. CONCLUSIONS AND FUTURE WORK

In the paper, we have defined the light field superpixel
(LFSP). The LFSP is defined in 4D space and can essentially
eliminate the defocus and occlusion ambiguities in traditional
2D superpixel segmentation. We have proposed a refocus-
invariant LFSP segmentation algorithm. By embedding 2D
disparity map into superpixel segmentation and defining a
clique system with 80 (spatial, angular and mixed) neighbors
in the full 4D light field, the proposed algorithm not only out-
performs the state-of-the-arts in term of traditional evaluation
metrics but also achieves good refocus-invariant and full-sliced
properties. In the future, we will not only explore the LFSP on
more challenging non-Lambertian surfaces and clutter scenes
but also try to segment and edit light field using LFSP.

APPENDIX A
PROOF OF THE PLANE EQUATION 2

Suppose that πi =(Ai , Bi , Ci )
	 assigns a planar equation to

the i -th LFSP si . The disparity of pixel p = (u0, v0, x0, y0) ∈
su0,v0

i in central view can be obtained by,

d̂(p, πi ) = Ai x0 + Bi y0 + Ci . (A.1)

We employ the EPI to derive the disparity of p =
(u, v, x, y) ∈ si (see Fig.24) in other views. Suppose that
(u0, x0) is a ray in central view and (u, x) is the correspon-
dence in the (u, v) view. It is known that (u, x) and (u0, x0)
are in a same epipolar line. The disparity of (u, x) or (u0, x0)
is defined as,

d̂ = x − x0

u − u0
. (A.2)

In other words, if we know the disparity d̂ of ray (u, x),
the corresponding (u0, x0) in central view can be computed
as,

x0 = x − d̂ · (u − u0) (A.3)

Similarly, if the disparity d̂ of (v, y) is known, the correspond-
ing (v0, y0) in central view can be computed as,

y0 = y − d̂ · (v − v0) (A.4)

Substituting Eqns. A.3 and A.4 into Eqn.A.1, we have

d̂(p, πi )= Ai ·(x −d̂ ·(u − u0))+Bi ·(y−d̂ ·(v−v0))+Ci .

(A.5)

Revisiting Eqn.A.5, the disparity of p = (u, v, x, y) ∈ si is
obtained,

d̂(p, πi ) = Ai x0 + Bi y0 + Ci

1 + Ai (u − u0) + Bi (v − v0)
. (A.6)
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APPENDIX B
THE 80-NEIGHBOURING SYSTEM

For a ray p = (u, v, x, y) in 4D light field, supposing its
disparity is d̂(p), its spatial and angular neighbors are,

Nspa(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u, v, x ± 1, y + 1)

(u, v, x ± 1, y − 1)

(u, v, x, y ± 1)

(u, v, x ± 1, y)

Nang(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(u ± 1, v + 1, x ± d̂(p), y + d̂(p))

(u ± 1, v − 1, x ± d̂(p), y − d̂(p))

(u ± 1, v, x ± d̂(p), y)

(u, v ± 1, x, y ± d̂(p))

(B.1)

To demonstrate better, 64 mixed neighbors are divided into
4 parts (each part contains 16 neighbors).

Nmix,1(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u + 1, v + 1, x + d̂(p) ± 1, y + d̂(p) + 1)

(u + 1, v + 1, x + d̂(p) ± 1, y + d̂(p) − 1)

(u + 1, v + 1, x + d̂(p), y + d̂(p) ± 1)

(u + 1, v + 1, x + d̂(p) ± 1, y + d̂(p))

(u − 1, v + 1, x − d̂(p) ± 1, y + d̂(p) + 1)

(u − 1, v + 1, x − d̂(p) ± 1, y + d̂(p) − 1)

(u − 1, v + 1, x − d̂(p), y + d̂(p) ± 1)

(u − 1, v + 1, x − d̂(p) ± 1, y + d̂(p))

(B.2)

Nmix,2(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u + 1, v − 1, x + d̂(p) ± 1, y − d̂(p) + 1)

(u + 1, v − 1, x + d̂(p) ± 1, y − d̂(p) − 1)

(u + 1, v − 1, x + d̂(p), y − d̂(p) ± 1)

(u + 1, v − 1, x + d̂(p) ± 1, y − d̂(p))

(u − 1, v − 1, x − d̂(p) ± 1, y − d̂(p) + 1)

(u − 1, v − 1, x − d̂(p) ± 1, y − d̂(p) − 1)

(u − 1, v − 1, x − d̂(p), y − d̂(p) ± 1)

(u − 1, v − 1, x − d̂(p) ± 1, y − d̂(p))

(B.3)

Nmix,3(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u + 1, v, x + d̂(p) ± 1, y + 1)

(u + 1, v, x + d̂(p) ± 1, y − 1)

(u + 1, v, x + d̂(p), y ± 1)

(u + 1, v, x + d̂(p) ± 1, y)

(u − 1, v, x − d̂(p) ± 1, y + 1)

(u − 1, v, x − d̂(p) ± 1, y − 1)

(u − 1, v, x − d̂(p), y ± 1)

(u − 1, v, x − d̂(p) ± 1, y)

(B.4)

Nmix,4(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(u, v + 1, x ± 1, y + d̂(p) + 1)

(u, v + 1, x ± 1, y + d̂(p) − 1)

(u, v + 1, x, y + d̂(p) ± 1)

(u, v + 1, x ± 1, y + d̂(p))

(u, v − 1, x ± 1, y − d̂(p) + 1)

(u, v − 1, x ± 1, y − d̂(p) − 1)

(u, v − 1, x, y − d̂(p) ± 1)

(u, v − 1, x ± 1, y − d̂(p))

(B.5)
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