
https://doi.org/10.1007/s11042-020-08890-x

Region-based depth feature descriptor for saliency
detection on light field

XueWang1 ·Yingying Dong1 ·Qi Zhang1 ·QingWang1

Received: 4 June 2019 / Revised: 3 January 2020 / Accepted: 27 March 2020 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
This paper addresses the light field saliency detection problem via a multiple cue integration
framework. By reinterpreting the usage of dark channels in estimating the amount of defo-
cus, a novel region-based depth feature descriptor (RDFD) defined over the focal stack is
proposed. Compared to the methods which utilize the depth map as another image channel,
the RDFD can produce more informative saliency cues and make less restrictive assump-
tions on accurate depth map or focused clear images containing dark pixels. The proposed
RDFD facilitates saliency detection in the following two respects: (1) the region-based
depth contrast map can be computed by measuring a pair-wise distance between super-
pixels with the proposed RDFD, (2) a spatial distribution prior in the 3D space (3D-SDP)
can be obtained from such depth measurements to provide high-level semantic guidances,
including the gradient-like distribution in depth and the object-biased prior in image plane.
Both of them contribute to generating a contrast-based depth saliency map and refining a
background-based color saliency map. Finally, these saliency maps are merged into a single
map using a multi-layer cellular antomata (MCA) optimizer. Experimental results demon-
strate that our method outperforms state-of-the-art techniques on the challenging light field
saliency detection benchmark LFSD.

Keywords Light field · Saliency detection · Multiple cue integration · Dark channels ·
Depth feature descriptor

1 Introduction

Visualsaliency detection aims at locating the pixels or regions in a scene which most catch
human visual attention. It plays an important preprocessing role in numerous computer
vision applications, such as image retargeting [9], object recognition [32], image retrieval
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[22, 23, 40], image compression [13] and image segmentation [10]. Many saliency models
have been developed for predicting eye fixation [6, 14, 36] or detecting salient objects [1,
2, 7, 17, 24]. The former focuses on estimating the points in 2D or 3D at which people are
looking, while the latter tends to highlight the complete salient object as well as to eliminate
the background.

Existing salient object detection solutions have focused on exploring various saliency
cues or priors. Numerous 2D visual features has been proposed, including low-level features
such as color, intensity, orientation, and high-level semantic descriptors such as object-
ness [17, 25, 38]. The color contrast prior has been widely accepted and used in almost
all saliency models [7, 17, 20, 30, 41, 42]. However, 2D saliency models may fail when
the foreground has a similar appearance with the background, or the texture in the fore-
ground/background is cluttered. To address this, newmethods combined depth contrast prior
derived from RGB-D data [28, 31] or light fields [20, 41, 42] with 2D saliency features are
proposed to improve the performance. Multiple cue integration proves to be a promising
strategy for visual saliency detection tasks in complex scenarios.

Inspired by the mechanism of human visual attention, in this article, we propose a com-
putational model for saliency detection in light fields by combing low-level features and
high-level features. The basic idea is based on two observations. First, human eyes can con-
duct dynamic refocusing over different depth layers. But sometimes it is difficult to find
out the foreground slice candidates or background slices due to the absence of high-level
knowledge. Second, since human visual system can rapidly identify the salient object and
ignore the background, it tends to capture objects within certain layers instead of all depth
layers. Useful depth measurements for saliency detection tasks should serve to highlight
complete salient objects and meanwhile eliminate the background, rather than determin-
ing accurate depth for each pixel. Therefore, we start with the dark channel to analyze its
relationship with defocus blur. Then a novel RDFD extracted from the light field stack is
proposed to facilitate both low-level and high-lever cues. Based on the RDFD, a contrast-
based depth saliency map is generated by jointly taking the depth contrast map and the
3D-SDP into consideration. The proposed 3D-SDP aims to distinguish complete salient
objects from distractors with distinctive distribution in depth and in image plane. In addi-
tion, a background-based color saliency map is also constructed by adopting the RDFD into
background selection. Finally, the contrast-based depth saliency map and the background-
based color saliency map are merged into a single map using a MCA optimizer. The pipeline
of the proposed model is shown in Fig. 1.

Our major contributions can be summarized as follows:

(1) The usage of dark channels is reinterpreted to introduce a novel implicit depth
descriptor for the light field by estimating the amount of defocus.

(2) A novel region-based depth feature descriptor (RDFD) extracted from the light field
focal stack is introduced to provide more informative and robust depth cues for
saliency detection. Unlike the methods using the depth map as another image chan-
nel, the extracted RDFDs provide enough discriminative information between the
foreground and the background with even moderate depth estimation.

(3) A 3D spatial distribution prior derived from depth measurements is proposed to refine
saliency estimations. The proposed 3D-SDP contributes to highlighting the complete
salient object and simultaneously eliminating the background in both depth space and
2D image space.
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Fig. 1 The pipeline of the proposed light field saliency detection model

2 Related work

In past decades, extensive methods have been proposed for saliency detection. Readers
can refer to [5] for comprehensive comparisons on state-of-the-art solutions. Here we only
discuss most relevant methods from the following three aspects.

2.1 Spatial distribution prior

Since bottom-up approaches relying on low-level features tend to break a salient object into
pieces [4], researchers propose to integrate high-level guidances into the saliency detection
model, such as center-biased prior or object-biased prior. Center-biased prior assumes that
salient objects are more likely to locate near the image center. Borji et al. [5] analyzed
the influences of the center bias in model performances over challenging datasets. They
found that a high precision can be easily achieved on images with large foreground objects
by jointly considering the center bias property. Many existing solutions [11, 16, 33] have
incorporated the center bias into their models, but the performance will be degraded when
there is less center bias or small objects in images. Li et al. [21] used an object-biased
Gaussian model as the 2D spatial distribution prior to refine saliency detection results. Our
approach tries to combine the high-level guidance by proposing a 3D-SDP which includes
both the gradient-like distribution in depth and the object-biased prior in image.

2.2 Background selection

Similar to the center-bias property of salient objects, background regions are prone to having
the border-bias property. Background priors have been proved to be equally important, since
one can eliminate the background to significantly improve foreground detection. Several
approaches [15, 19, 21, 30, 39] considered that the image border is likely to be background.
Li et al. [21] considered image boundaries as background templates and reconstructed the
entire image by dense and sparse appearance models. Yang et al. [39] used the nodes on
each side of an image as labelled background queries, then four side-specific maps can be
generated. Jiang et al. [15] suggested that the random walk starting from background nodes
could easily reach the absorbing nodes by using the boundary nodes as absorbing nodes. Qin
et al. [30] applied the K-means algorithm to classify image borders into several clusters. Li
et al. [19] constructed the non-saliency dictionary with super-pixels belonging to reference
image boundaries and out-of-focus regions. However, Zhu et al. [43] found that it was fragile
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to treat all image boundaries as background when salient objects touched the boundary.
Thus, they proposed another background measurement named boundary connectivity. They
observed that an image patch belonged to the background only when the region was heavily
connected to the image border.

Most of the above mentioned techniques rely on the color contrast. When the foreground
and background have similar colors or textures, these approaches usually fail. Li et al. [20]
calculated the focusness for each focal stack image and estimated depth layers with the
assistance of underlying center prior. Background regions were selected with the focusness
cue and the location cue. Zhang et al. [41] chose regions with higher background probability
on the focusness map as the background. Our work exploits the depth cue embedded in
the focal stack, which can significantly improve the saliency detection performance. Then
regions with lower depth saliency values tend to be the background.

2.3 Depth cue

Depth cue has been proved to play an important role in saliency detection [18], which can be
captured using a depth camera or estimated from stereo images. In the past decades, many
studies have incorporated depth cue into their saliency detection models. Lang et al. [18]
exploited the global-context depth prior extracted from the Kinect camera and estimated the
joint density between saliency and depth using a mixture of Gaussians. Ciptadi et al. [8]
explored the 3D layout and shape features from depth cues instead of simply treating depth
as another channel of the input image.

Recently, several saliency detection models based on light fields have been proposed.
Thanks to the efficient focusness and objectness cues embedding in a light field, these
methods greatly improve saliency detection tasks in challenging scenarios such as similar
foreground and background, cluttered background, and complex occlusions. Li et al. [20]
pioneered a new saliency detection method on light field by utilizing the focusness map of
each focal stack image to select the background and foreground candidates, which elimi-
nated the limitation with depth maps. Zhang et al. [41] presented that saliency objects can be
separated from the background by exploiting the depth-included contrast map. Sheng et al.
[34] utilized the occlusion relationship to distinguish foreground and background regions.
Besides, Li et al. [19] proposed a unified saliency detection framework for tailoring het-
erogenous types of input data, including 2D image data, 3D stereo data, and 4D light field
data. To exploit the information embedded in 3D or 4D data, Zhang et al. [42] adopted the
light-field flow for saliency detection. However, this method required discrete depth labels,
which was very time-consuming. Sheng et al. [35] applied the inherent structure information
in light field raw images for saliency detection.

Our approach resolves this issue by exploiting the depth cue embedded in a light field and
defining a region-based depth feature descriptor RDFD. Based on the efficient and robust
depth feature, we integrate depth contrast, objentness prior, color contrast and background
prior together into a multiple cue integration framework.

3 Depthmeasurements

Before proceeding, we establish the following general notations. Let {Im},m = 0, . . . , M −
1 denote the focal stack synthesized from the light field and I ∗ denote the all-focus image
by fusing the focused regions of {Im}. We segment I ∗ into N small super-pixels using the
simple linear iterative clustering (SLIC) algorithm [3]. Thanks to its ability of controlling
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the tradeoff between super-pixel compactness and boundary adherence, by adjusting the
normalized color proximity parameter of SLIC, the resulting super-pixels would become
smaller and have less regular size and shape. When the super-pixels are small enough,
it is reasonable to assume that all the pixels belonging to one super-pixel would have
similar depths. Such assumptions are used in many computer vision algorithms, such as
window/segment-based techniques [26, 44], the edge consistency for stereo matching [37]
and so on. More importantly, since we are more concerned with the depth-encoded feature
distribution instead of accurate depth estimations, we adopt the depth hypothesis that all
the pixels belonging to one super-pixel share the same depth as a simple means for more
robustness. We use x = (x, y) and r to denote a pixel and a super-pixel respectively.

3.1 Defocus blur and dark channel

To motivate our work, we first describe the dark channel and its role in exploiting the depth
cue embedded in the light field. For an image I , the dark channel [12] is defined by

DI (x) = min
x′∈�(x)

(
min

c∈{r,g,b} I
c(x′)

)
, (1)

where x and x′ denote pixel locations, I c is a color channel of I and �(x) is a local patch
centered at x. The defocus blur can be modeled as [29]

B = I ⊗ k + n, (2)

where B, I and n denote the blur image, latent image, and noise, respectively. We use the

2D Gaussian kernel k(x′|x, σ 2) = exp
(
−‖x−x′‖2

2σ 2

)
as the point spread function (PSF). Note

that we use k(σ 2) to denote k(x′|x, σ 2) in the following sections for simplicity. The standard
deviation σ is proportional to the diameter of the circle of confusion (CoC), which can be
used to measure the defocus blur.

The sparsity of dark channels has already been approved to be a natural metric to distin-
guish clear images from blurred images [27]. Furthermore, we find that the more blurred the
image is, the fewer dark pixels it has, thus the dark channel can also be used to distinguish
the degree of defocusing or blurriness. When the blurriness is uniform and spatial invariant,
our observation can be formulated as

DB1(x) ≥ DB2(x) ≥ DI (x), σ1 ≥ σ2, (3)

where B1 = I ⊗ k(σ 2
1 ) + n, B2 = I ⊗ k(σ 2

2 ) + n. With the condition σ1 ≥ σ2, the degree
of blurriness of image B1 is higher than that of B2.

Proof Since DB1(x) ≥ DI (x) and DB2(x) ≥ DI (x) have already been approved in [27],
we only need to determine the relationship between DB1(x) and DB2(x). Mathematically,
based on the theory that the convolution of two Gaussian probability density functions is
also a Gaussian, we have

B1 = I ⊗ k
(
σ 2
1

) + n

= I ⊗ k
(
σ 2
2

) ⊗ k
(
σ 2

) + n

= (I ⊗ k(σ 2
2 ) + n − n) ⊗ k(σ 2) + n

= (B2 − n) ⊗ k(σ 2) + n

= B2 ⊗ k(σ 2) − n ⊗ k(σ 2) + n

= B2 ⊗ k(σ 2) + n′,

(4)

where σ1
2 = σ2

2 + σ 2, σ1 > σ2. Thus we have DB1(x) ≥ DB2(x) according to [27].
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By taking the whole image into account, if there exists any pixel x satisfying I (x) = 0,
we have

‖DB1‖0 ≥ ‖DB2‖0 ≥ ‖DI‖0, σ1 ≥ σ2, (5)

where the L0 norm ‖·‖0 counts the number of non-zero entries in a vector or a signal.

3.2 Region-based depth feature descriptor

In order to extract the depth cue embedded in the focal stack at the super-pixel level, we
propose a region-based depth feature descriptor by integrating the degree of defocusing
over M focal stack images. The ideas behind the proposed RDFD originates from these two
observations: (1) A set of focal stack images can be generated from a light filed by focusing
at different depth levels. On each focal stack image, small regions/patches located at the
same depth tend to have the same degree of defocusing. (2) The dark channel prior can be
used to estimate the degree of defocusing or blurriness.

The main steps of computing the RDFDs of the super-pixels of I ∗ are shown in Fig. 2.
We first calculate dark channels of the all-focus image I ∗ and its corresponding focal stack
images {Im} using (1), which can be written as DI∗ and DIm respectively. Since the dark
channel prior would has no effect for image deblurring if the clear image contains no dark
(zero-intensity) pixels [27], we adopt the differential operation in this work to remove this
limitation. Thus the difference image �m(x) can be computed using

�m(x) = DIm(x) − DI∗(x), 1 ≤ m ≤ M . (6)

Based on the assumption that a small region, such as a super-pixel, has the same depth
and thus has the same degree of blurriness at a focal stack image, it is straightforward to
define the M-dimensional RDFDs for each super-pixel as follows,

U(r) = [U(r)m]Mm=1, U(r)m = 1 − ‖�m(r)‖0
Tr

, (7)

where Tr is the total number of pixels belonging to the region/super-pixel r . The effec-
tiveness of the differential operation for extracting the depth cue is shown in Fig. 3. The
horizontal axis and the vertical axis represent focal stack image indexes and RDFD val-
ues respectively. Without the differential operation, for the labelled region which does not
contain any dark pixels, its RDFDs over the focal stack display zero values and lose the
discriminability. While with the differential operation, the distribution of RDFDs over the
focal stack becomes distinguishable enough to extract the depth cue.
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Fig. 2 The procedure of depth cue extraction. The foreground region r1 focuses at I4, and the background
region r2 focuses at I11
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(a) (b) (c)

Fig. 3 Effectiveness of the differential operation for extracting the depth cue, including the all-focus images
on which the extracted boundaries from the over-segmentation and the interested super-pixels are superim-
posed (top) and corresponding RDFDs of the labelled super-pixels computed over the focal stack (bottom).
The focused depth layers of the labelled super-pixels can be found by adopting the differential operation

Once we obtain the RDFDs of all the super-pixels, we are able to find the depth layer in
a focal stack at which a super-pixel is maximally sharped by

lr = argmaxU(r)

= argmin
m

‖�m(r)‖0
Tr

, (8)

where lr is the layer m in terms of depth. We call lr the focused depth layer of super-pixel r .

4 Saliency detectionmodel

In this section we estimate the saliency map for the all-focus image. Our saliency esti-
mation is based on two sources of information, namely contrast-based depth saliency and
background-based color saliency. Both benefit from the RDFD.

4.1 Contrast-based depth saliency

The proposed RDFDs generate more informative saliency cues in the following two
respects: (1) the regional depth contrast map can be computed by measuring the pair-wise
distances between super-pixels with the proposed RDFDs. (2) the 3D-SDP can be obtained
from moderate depth measurements, including the gradient-like distribution in depth and
the object-biased prior in the 2D image plane. Then, a contrast-based depth saliency map
can be constructed by combining the depth contrast map and the 3D-SDP.
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4.1.1 Spatial distribution prior in 3D

The 3D-SDP can be obtained from the proposed RDFD, including object-biased prior and
a gradient-like distribution in depth. We use the proposed object-biased prior to refine our
saliency performance instead of simply applying the image center assumption in 2D. In
addition to the spatial information in 2D, experiments have demonstrated that human could
rapidly direct attention to the attended depth plane. It is also proved that a gradient-like
distribution in depth can be obtained with maximal processing at the attended depth plane,
declining efficiency at more peripheral depths.

To extract the attended depth plane and potential salient object center, we applyK-means
algorithm to divideN super-pixels intoK sets, S = {

S1, S2, . . ., SK
}
based on their focused

depth layer and location information in the 2D image plane. Since a salient object should
be complete and have a well-defined closed boundary [4], we set K = 2, referring to
the foreground and background respectively. Given a set of observations {d1, d2, . . . ,dN },
where each observation is defined by a three-dimensional real vector,

dr = [w1lr , w2xr , w3yr ] , (9)

where lr is the focused depth layer of super-pixel r , (xr , yr ) are the coordinates of the
centroid of super-pixel r , w1, w2 and w3 are the weights assigned to depth and position
respectively. In the experiment we set w1 : w2 : w3 = 6 : 1 : 1 to give a higher weight for
the depth cue. After clustering, the k new centroids, one for each cluster, can be obtained,
represented by dk = [

ω1l
k, ω2x

k, ω3y
k
]
, 1 ≤ k ≤ K , where lk and (xk, yk) correspond to

the depth layer and the location of the centroid of the k-th cluster respectively. We compute
the foreground cluster label f based on the observation that regions locating at the closer
depth range tend to be the foreground

lf = argmin
k

{
lk

}
, (10)

where lf denotes the attended depth plane for the foreground. For each super-pixel, the
gradient-like distribution in depth can be modeled as

Lr = exp(− (lr − μ)2

2σ32
), (11)

where μ = lf and σ3 = 1/M . We map the focused depth layer lr of super-pixel r to
Lr by adopting a Gaussian kernel, which achieves a maximum value at the attended depth
plane. As a result, regions focused at the attended depth plane are assigned the maximum
depth saliency value, while the regions focused at the farthest layer from the attended depth
plane are assigned the minimum depth saliency value. The gradient-like distribution in
depth makes it feasible to separate foreground from background once there exists differ-
ences between the foreground depths and the background depths. The mapping from lr to
Lr using a Gaussian kernel guarantees that foreground regions can still be assigned a higher
value even when the estimation of the attended depth plane μ is inaccurate.

To render the salient object center instead of simply using the image center, we propose
our object-biased model by

G(x, y) = exp

(
−

(
(x − μx)

2

2σx
2

+
(
y − μy

)2
2σy

2

))
, (12)
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where x and y are the coordinates of the pixel in I ∗, μx and μy denote the coordinates of
the foreground centroid. We set σx = 0.25 × W and σy = 0.25 × H as in [21], where W

and H respectively denote the width and height of the all-focus image I ∗.
Furthermore, we define the object-biased prior over the super-pixel using

G (r) = 1

Tr

∑
(x,y)∈r

G (x, y). (13)

When the object does not locate at the image center, the proposed object-biased prior renders
a more accurate object center (see Fig. 4), and therefore better refines the saliency detection
results.

4.1.2 Depth saliency map

The similarity of any pair of super-pixels can be measured by the cosine distance with the
proposed RDFD. We construct the depth contrast map by

DC (ri) =
∑
ri 	=rj

exp

(∥∥ri , rj
∥∥

−σ42

)
· (
1 − d

(
U (ri) ,U

(
rj

)))
, (14)

where
∥∥ri , rj

∥∥ is the 2D Euclidean distance between the centroids of ri and rj , and
d

(
U (ri) ,U

(
rj

))
is the cosine distance between the RDFDs of ri and rj . We set σ42 = 0.4

with pixel coordinates normalized to [0, 1] as in [7].
We further construct the contrast-based depth saliency map by incorporating the pro-

posed 3D-SDP to separate the foreground from the background,

DS(r) = (1 − Lr ) · G(r) · DC(r). (15)

Inspired by [30], we use the Singly-layer Cellular Automata (SCA) to optimize the depth
saliency map computed by (15). By considering a single super-pixel as a cell, SCA is capa-
ble of exploiting the internal relationship within the neighborhood of the cell. Different from
[30], we make a modification to the original SCA method to improve the depth saliency

(a) (b) (c) (d) (e)

Fig. 4 Examples of SDPs in the 2D image space computed by our object-biased prior when the object does
not locate at the image center
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analysis. We construct the impact factor matrix F = [
f

(
ri , rj

)]
N×N

by defining the impact

factor f
(
ri , rj

)
for super-pixel ri as

f
(
ri , rj

) =
{
exp

(
− 1−d(U(ri ),U(rj ))

σ5
2

)
, rj ∈ NB(ri)

0, otherwise orri = rj
, (16)

where NB (ri) is the set of neighbors of ri . We set σ5
2 = 0.1 as in [30]. It makes sense

that super-pixels within the same object tend to be homogeneous in perspective of depth.
Thus, the neighbors with more similar depth features have greater influences on the next
state of the cell. We denote the optimized depth saliency map as DSop. Figure 5 shows the
improvement of the optimized depth saliency map.

4.2 Background-based color saliency

The contrast-based depth saliency model can efficiently detect the salient foreground
regions when the foreground and the background have different depth ranges. However, for
the scenes of which the foreground and the background located at close depth layers or at the
same depth range, the contrast-based depth saliency model would fail to separate the fore-
ground from the background. Hence, we consider integrating the background-based color
saliency model.

4.2.1 Background selection

Robust background prior can greatly improve the performance of saliency detection. Based
on the observation that regions with lower depth saliency values are more likely to be
backgrounds, we compute the background likelihood score B(r) for each super-pixel by

B(r) = DSop(r). (17)

We further threshold the background likelihood score of all super-pixels for determining
the background regions {Br }, 1 ≤ r ≤ h in the all-focus image I ∗, where h denotes the total
number of super-pixels belonging to the background.

(a) (b) (c) (d) (e)

Fig. 5 The process of our depth saliency map construction model. (a) All-focus image. (b) Depth contrast
map. (c) Depth saliency map by incorporating the 3D-SDP into the depth contrast map. Salient regions are
highlighted and non-salient regions have been better suppressed. (d) Depth saliency map after optimization.
Our modified SCA method generates a more smooth depth salient map. (e) Ground truth
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4.2.2 Color saliency map

Once the super-pixels belonging to the background have been selected, the background-
based color saliency map can be modeled as

CS(ri) = G(ri) ·
⎡
⎣ 1

h

∑
rj ∈{Br }

1

max
c∈{r,g,b}

∥∥ri c, rj c
∥∥
⎤
⎦

−1

, (18)

where
∥∥ri

c, rj
c
∥∥ is the Euclidean distance between the c-th color channels of ri and rj .

The introduced object-biased term G(ri) contributes to the foreground enhancement as
well as the background suppression, thus contributes to a better color saliency detection
performance.

In order to combine the advantages of these two saliency maps DSop and CS, we
construct the final saliency map S by adopting the MCA optimization as in [30].

5 Experiments

We compare our approach with state-of-the-art methods including LFS [20], WSC [19],
DILF [41] and MA [42]. The results of aforementioned methods are provided by their
authors or found at corresponding project sites. The experiments are conducted on the Light
Field Saliency Dataset (LFSD) [20]. Another dataset proposed for light field saliency detec-
tion, HFUT-Lytro dataset [42], is not used in our experiment, since the all-focus image is
not spatially aligned with its focal stack images in terms of the image content, thus the dif-
ferential operation in Eq.6 would cause errors. Theoretically, since the all-focus image and
its corresponding focal stack images are extracted from the same raw image, the content of
the all-focus image should be the same as that of its corresponding focal stack images. The
focal stack images can be used to generate saliency cues or maps only when they have the
same Field-of-View (FOV) with the corresponding all-focus image.

5.1 Experiment setup

Implementation details We set the number of super-pixels N = 240 in all the experi-
ments, and the patch size � in Eq.1 as 7 × 7.

Evaluation metrics To conduct a quantitative performance evaluation, we use the
precision-recall curve (PR curve), F -measure and the mean absolute error (MAE) to evalu-
ate all the comparing saliency detection methods. Similar to previous works, we use a fixed
threshold from 0 to 255 to binarize saliency maps. For each threshold, a pair of precision
score and recall score is generated over the whole dataset.

The F -measure is a weighted harmonic mean of precision and recall defined by

Fβ =
(
1 + β2

)
Precision × Recall

β2Precision + Recall
, (19)

where β2 is set to 0.3 to emphasize the precision term [2]. Here, we perform the evaluation
using an adaptive threshold for each saliency map, which is defined the twice as much as
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the mean saliency of the saliency map S:

T = 2

W × H

W∑
x=1

H∑
y=1

S(x, y). (20)

For a more comprehensive comparison, we compute the MAE between the continuous
saliency map S and the binary ground truth annotation GT by

MAE = 1

W × H

W∑
x=1

H∑
y=1

‖S(x, y) − GT (x, y)‖. (21)

5.2 Comparison with state-of-the-art methods

We first evaluate the performance of the proposed method against four state-of-arts meth-
ods, including LFS, WSC , DILF and MA. The quantitative evaluation results are shown in
Fig. 6. Our approach significantly outperforms most comparing methods and achieves sim-
ilar performance as DILF in terms of the precision-recall curve. In addition, the precision
score of our algorithm is higher than that of DILF, only slightly belowMA. One explanation
for this is that the proposed depth measurements can significantly suppress the background,
while the halo effect brought from the patch-based dark channel operation leads to a lower
precision score. Moreover, our method achieves the best F -measure and the best MAE over
state-of-the-art methods.

For visual comparisons, some examples are shown in Fig. 7, from which we can see that
our method achieves a better background suppression performance, and generates saliency
maps closer to the ground truth annotation.

In terms of computation complexity, we compare the average runtime for each sample
among different light field saliency detection methods. We run the implementation by Mat-
lab and C++ on an Intel i7 3.6GHz CPU PC with 16GB RAM. Table 1 shows the time cost
of our approach compared with other state-of-the-art methods [19, 20, 41, 42]. It can be
seen that our approach consumes a smaller amount of computing time than LFS, WSC and
MA and a bit more than DILF.

5.3 Analysis of the proposedmethod

We further evaluate our method in details. In this paper, the most significant work is that
we present a simple but effective method to extract depth cue embedded in the light field
focal stack by using the dark channel prior. Hence we propose to use RDFD to construct

Fig. 6 Quantitative comparisons of different methods in LFSD. Left: precision-recall curves. Middle:
precision, recall, and F -measure for adaptive thresholds. Right: MAE scores
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Image LFS WSC MA DILF Ours GT

Fig. 7 Qualitative comparisons of different methods in LFSD. Our method generates saliency maps closer to
the ground truth due to a better performance of foreground enhancement as well as background suppression

the contrast depth map and generate the 3D-SDP. Instead of just incorporating depth maps
into the saliency detection model [41, 42], the proposed method of extracting depth cue has
two advantages: (1) the proposed depth measurements produce more informative saliency
cues. Useful depth measurements tailored for saliency detection task aim at highlighting
salient objects and meanwhile eliminating the background instead of determining the accu-
rate depth value for each pixel or super-pixel. Besides, the proposed 3D-SDP improves the
foreground enhancement and background suppression in perspective of rendering the poten-
tial salient object center in the image planes and obtains a gradient-like distribution in depth.
(2) As [41, 42], the depth saliency is computed based on the depth map. The performance
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Table 1 Comparison of average time taken for different saliency detection methods

Methods LFS WSC DLIF MA Our approach

Runtime (seconds) 3.8 8.5 0.9 4.2 3.6

may partially depend on an accurate depth map estimation, while the generation of an accu-
rate depth map is time-consuming. Besides, the color saliency map achieves a better result
due to the selection of background regions and the proposed 3D-SDP.

To validate the effectiveness of the proposed method, we perform an ablative anal-
ysis of our system, by comparing to the following baselines: (1) contrast-based depth
saliency, (2) contrast-based depth saliency combined with the 3D-SDP, (3) color saliency,
(4) background-based color saliency and (5) background-based color saliency combined
with object-biased prior.

Figure 8 shows quantitative comparisons of different baselines. It seems remarkable that
the depth saliency maps achieve a better performance (the curves or bars corresponding to
the annotation ‘Depth+3D-SDP’) than the color saliency maps (the curves or bars corre-
sponding to the annotation ‘Color+bg+ob’), second only to the fusion of the depth and color
saliency. Note that, we just combine the depth and color saliency with a linear method in
order to exclude the benefits obtained from various optimization approaches or fusion strate-
gies. Each cue has its own uniqueness to improve the saliency detection performance, even
simple combination of depth saliency and color saliency outperforms other methods. Fur-
thermore, experimental results demonstrate that the performance is significantly improved
with the proposed 3D-SDP, which strongly validates the effectiveness of the proposed 3D-
SDP. Fig. 4 shows some examples where the object does not locate at the image center and
results generated from the object-biased prior. It can be seen that our algorithm renders more
accurate object center, and therefore better refines the saliency detection results.

However, there exists some limitations of our approach. As mentioned in [20], the salient
foreground objects in light fields generally appear ’bigger’ than those in the image-based
benchmarks due to the narrow Field-of-View of the Lytro camera. Thus, when object region
is small enough, the object center may deviate from its true position. Besides, the proposed
object-biased prior would probably degenerate into the center-biased prior when salient
objects cannot be distinguished in terms of depth.

Fig. 8 Quantitative comparisons of different saliency cues in LFSD. Left: precision-recall curves from dif-
ferent light field properties; Middle: precision, recall, and F -measure for adaptive thresholds. Right: MAE
scores
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6 Conclusion

In this paper, we propose a novel saliency detection model by exploiting the depth cue
embedded in a light field. Instead of using the depth map as input or initialization directly,
we define the RDFD by computing the degree of defocus for each super-pixel over the
light field focal stack. Compared to off-the-shelf approaches relying on accurate depth esti-
mation, the proposed RDFD produces more informative and robust saliency cues mainly
in two respects: (1) the regional depth contrast map can be computed by measuring the
pair-wise distance between the RDFDs of two super-pixels, (2) the 3D-SDP, including the
gradient-like distribution in depth and the object-biased prior in the 2D image plane, can be
estimated using RDFDs to further improve the depth saliency map. The RDFD is proved to
be an efficient depth measurement tailored for saliency detection task and capable of high-
lighting salient objects and meanwhile eliminating the background, instead of determining
the accurate depth for each pixel. Also, due to the difference operation in computing the
RDFD, such measurements eliminate the limitation that the dark channel prior fails when
the focused clear image does not contain dark pixels. Experimental results demonstrate that
our approach outperforms state-of-the-art methods, and the proposed depth measurement
contributes to a significant improvement.

Funding Information This work is supported by NSFC under Grant 61801396 and 61531014, and by the
Fundamental Research Funds for the Central Universities under Grant 3102018zy030.
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