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Abstract
This paper is concerned with the problem of multi-view 3D reconstruction with an un-calibrated micro-lens array based light
field camera. To acquire 3DEuclidean reconstruction, existing approaches commonly apply the calibrationwith a checkerboard
and motion estimation from static scenes in two steps. Self-calibration is the process of simultaneously estimating intrinsic
and extrinsic parameters directly from un-calibrated light fields without the help of a checkerboard. While the self-calibration
technique for conventional (pinhole) camera is well understood, how to extend it to light field camera remains a challenging
task. This is primarily due to the ultra-small baseline of the light field camera. We propose an effective self-calibration
method for a light field camera for automatic metric reconstruction without a laborious pre-calibration process. In contrast to
conventional self-calibration, we show how such a self-calibration method can be made numerically stable, by exploiting the
regularity andmeasurement redundancies unique for the light field camera. The proposedmethod is built upon the derivation of
a novel ray-space homography constraint (RSHC) using Plücker parameterization as well as a ray-space infinity homography
(RSIH). We also propose a new concept of “rays of the absolute conic (RAC)” defined as a special quadric in 5D projective
space P

5. A set of new equations are established and solved for self-calibration and 3D metric reconstruction specifically
designed for a light field camera . We validate the efficacy of the proposed method on both synthetic and real light fields, and
have obtained superior results in both accuracy and robustness.

Keywords Light field · Self-calibration · 3D reconstruction · Rays of the absolute conic (RAC)

1 Introduction

Light fields are commonly represented as spatial and angu-
lar discrete sampling of rays. Since the first hand-held light
field camera (LFC) (Ng et al. 2005) is put forwarded in the
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last decade, significant efforts have been spent to develop
compact and handy LFCs. Due to the regular and abundant
angular information of light fields, commercial micro-lens
array based LFCs such as Lytro (2011) and Raytrix (2013)
gain increasing popularity and have been applied to many
computer vision tasks, e.g. structure-from-motion (SfM)
(Johannsen et al. 2015; Zhang et al. 2017b; Nousias et al.
2019), 3D reconstruction (Johannsen et al. 2016; Zhang et al.
2017a; Vianello et al. 2018), light field stitching (Birklbauer
and Bimber 2014; Guo et al. 2016; Ren et al. 2017) and
robust SLAM (Dansereau et al. 2011; Dong et al. 2013; Li
et al. 2019). In order to perform these 3Dmetric related tasks,
having an LFC metrically calibrated is essential.

Traditionally, existing multi-view LFC based applications
conduct LFC calibration as a pre-processing separately and
achieve their method with calibrated light fields. However,
most LFC calibration methods are often conducted in an ad
hoc way, depending on a direct adaption of the calibration
method designed for a single pinhole camera. Even if it only
requires a single printed checkerboard, the pre-calibration
process is still time-consuming and laborious, consider-
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ing need of the additional captured light fields. It is much
desirable to have a “self-calibration” (aka auto-calibration,
or on-the-fly) method that can automatically determine the
parameters of an LFC without the aid of any specific calibra-
tion target, but simply from observing the static scene. Once
this is done, it is possible to compute a 3Dmetric reconstruc-
tion from multiple un-calibrated light fields directly.

Although an underlying LFC can be equivalent to an
array of pinhole cameras, for which one could use the
traditional self-calibration technique developed for one sin-
gle pinhole camera. Taking a large number of sub-aperture
images extracted from the light field into consideration, self-
calibrating the sub-aperture images independently is still an
onerous task. Moreover, treating each sub-aperture as a tiny
pinhole camera overlooks the regularity among sub-apertures
resulting in unstable estimation (Zhang et al. 2019c). Due
to regularly arranged view points of an LFC on a plane, it is
necessary to process the light field as a whole. It is our view
that the abundant and regular rays captured by the LFC pro-
vide rich and redundant constraints that one needs to utilize
for better numerical stability of any LFC based algorithms.

Besides, the constant baseline during self-calibration is
another advantage of LFCs compared with traditional pin-
hole cameras. Since the traditional self-calibration methods
cannot recover the scale directly, the translation between the
first pair of cameras has a unit vector. However, the light
field is equivalent to numerous sub-aperture images regu-
larly arranged on a plane, and the baseline indicates the
translation between neighboring sub-aperture images (Bok
et al. 2017; Zhang et al. 2019c). Consequently, the constant
intrinsic parameters, especially the baseline, make it easy to
constrain the translation up to a uniform scale for 3D metric
reconstruction (aka similar reconstruction) directly. It is also
worth noting that since theEuclidean distance of static scenes
is not provided in advance, the LFC self-calibration method
recovers metric structure instead of isometric structure.

To the best of our knowledge, there is no dedicated LFC
self-calibration algorithm available in the literature. This
work is proposed to fill in this gap by providing the first
self-calibration algorithm specifically designed for an LFC.
The overview of the proposed algorithm is illustrated in
Fig. 1. Specifically, by exploiting ray-space infinity homog-
raphy and its conjugate rotation, a novel “rays of the absolute
conic” (RAC) quadric equation is derived for an LFC. Solv-
ing these RAC equations gives rise to accurate and robust
LFC self-calibration, and at the same time, 3D metric recon-
struction can be computed via ray–ray correspondences. The
ray–ray correspondence is two rays emitted from the same
3D point but sampled by two light fields. Also note that sim-
ilar to some traditional self-calibration algorithms, the effect
of radial distortion is neglected to simplify the proposed
self-calibration method. Moreover, a common belief in these
traditional self-calibration algorithms is numerical instability

because of the insufficient features, and it still requires further
research. Contrary to this, we show in this paper, by exten-
sive experiments, the proposed LFC self-calibration method
is numerically stable, and the estimated results (both camera
parameters and reconstructed 3D structures) are accurate and
robust to noise and outliers.

In summary, the main contributions are:

1. we develop a ray-space homography constraint based on
ray–ray correspondences with Plücker parameterization.

2. we explore the ray-space infinity homography and present
a new concept of “rays of the absolute conic” for LFC
self-calibration.

3. we design a self-calibration algorithm of which the effec-
tiveness is verified by 3D metric reconstruction with an
un-calibrated LFC.

2 RelatedWork

2.1 Light Field Camera Motion Estimation

Researchers focus on recovering accurate LFC positions
since the hand-held LFC is first introduced by Ng (2005).
Light field essentially records the rays in space. Plücker coor-
dinate also provides a reliable mathematical mechanism to
uniformly parameterize rays and describe ray-to-ray trans-
formation. For this reason, motion estimation for generalized
cameras is a natural application for light field imaging. Pless
(2003) utilizes rays to represent image pixels with Plücker
coordinates. The generalized epipolar constraint between
ray–ray correspondences is first proposed for motion estima-
tion for generalized cameras. A linear framework requiring
17 ray–ray correspondences is proposed and solved via the
Singular Value Decomposition (SVD). Based on Plücker
coordinates, Bartoli and Sturm (2001, 2004) present the 3D
line motion matrix for projective transformation and then
specialize it to the affine, similar and Euclidean transforma-
tions. Different algebraic distances are defined to estimate
motion from3D line-line correspondences.Bartoli andSturm
(2005) also derive Plücker constraints for traditional camera
motion estimation and 3D reconstruction from 3D line-line
correspondences, including initialization, triangulation and
bundle adjustment. Sturm (2005) further unifies the theory
of multi-view geometry for generalized cameras. This can
also be applied to LFCs by considering an LFC as an array
of pinhole cameras. Li et al. (2008) analyze the degener-
acy of the generalized epipolar constraint on three typical
generalized cameras, including non-overlapping, axial and
non-overlapping-axial multi-cameras. For these types of
cameras, a linear method, where the essential matrix is first
recovered and the rotationmatrix is then decomposed, is pro-
posed to avoid the ambiguity. It is worth noting that an LFC

123



3008 International Journal of Computer Vision (2021) 129:3006–3026

Fig. 1 An overview of LFC
self-calibration and 3D metric
reconstruction. We decode
sub-aperture images and extract
ray–ray correspondences from
two LFs with Plücker
parameterization. Ray–ray
correspondence is two rays from
the same 3D point but sampled
by two light fields. Given these
ray–ray correspondences, we
generate the ray-space
homography constraint (RSHC).
The LFC parameters including
LFC intrinsic matrix K and
relative pose R, t are then
solved. We also implement 3D
metric reconstruction with an
un-calibrated LFC

does not cause these degeneracies due to the overlapping
and planar views. Moreover, Kneip et al. (2014) combine the
generalized epipolar constraint with eigenvalue minimiza-
tion and develop an iterative solution to estimate motion of
multi-cameras from at least 7 correspondences. This algo-
rithm is numerical instability and sensitive to initialization
although less correspondences are utilized.

Johannsen et al. (2015) first introduce Plücker parameter-
ization to represent rays captured by an LFC. They derive a
linear ray-point constraint extended from the method of Li
et al. (2008) to estimate LFC’s pose. This constraint defines
the relationship between the 3D point and the rays inter-
sected at that point, but it is difficult to recover the 3D
point accurately with rays in a single light field, taken the
ultra-small baseline of an LFC into consideration. Instead of
ray-point constraint associated with 3D points, the ray con-
straints using line and plane are developed respectively by
Zhanget al. (2017b).They explore the transformations of ray-

line and ray-plane with the changing pose. Similarly, either
ray-line constraint or ray-plane constraint is sensitive to small
noises, due to ultra-small baseline of the LFC.More recently,
Nousias et al. (2019) summarize a complete structure-from-
motion pipeline for a calibrated LFC. They also demonstrate
that ray–ray constraint of Li et al. (2008) is stable compared
with ray-point constraint of Johannsen et al. (2015) for the
initialization of LFC motion estimation.

In the following, the termmetric structure implies that the
structure is definedup to a similarity according to Hartley and
Zisserman (2003). The metric structure is an isometric struc-
ture composed with an isotropic scaling. In summary, the
above methods enable 3D metric reconstruction to recover
from pre-calibrated LFCs. The reconstruction that is directly
recovered from multiple light fields without a prior cali-
bration may result in a projective reconstruction, as also
demonstrated in Zhang et al. (2019c), so having a metrically
calibrated LFC is important.
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2.2 Light Field Camera Calibration

Many research groups have extensively explored various
LFC calibration algorithms to further perform multi-view
light field based tasks. The first LFC calibration algorithm
is proposed by Dansereau et al. (2013), which derives a 4D
decoding matrix containing 12 free parameters. This matrix
transforms recorded pixels into rays outside the LFC. How-
ever, they utilize a traditional calibration for initialization,
which is still a time-consuming process for LFC, as verified
in Zhang et al. (2019c). Besides, their intrinsic parameters
are redundant and dependent, which leads to irregular rays
for post-processing (e.g. SfM and 3D reconstruction, as also
demonstrated in Birklbauer and Bimber 2014). Contrary to
this, Bok et al. (2014; 2017) propose a geometric projection
with 6 intrinsic parameters that are complex but have clear
physical meaning. They generate line features extracted from
sub-images of raw data for calibration. However, the low-
resolution of sub-image brings challenges for accurate line
feature extraction, so does the unfocused capturing status.
It also demonstrates that raw data with low-resolution sub-
images (e.g. 14 × 14 for Lytro Illum) can not perform LFC
based algorithms stably. Consequently, for most LFC based
applications, the first step is usually seeking another light
field representation, such as sub-aperture images.

Zhang et al. (2019c) also present a 6-parameter multi-
projection-center (MPC) model. It is applicable to both
traditional LFC and focused LFC designs. A 3D linear
point-ray constraint is defined as the relationship between
geometric structure and sampling rays, which also shows the
importance of intrinsic parameters for 3D reconstruction. An
efficient LFC calibration pipeline is developed for generic
LFC. The projections of an LFC onto planes and conics are
also explored under the MPC model by Zhang and Wang
(2018) and Zhang et al. (2019b) respectively. Given that a
light field essentially represents the collection of rays as a
whole, a ray-space projection model is extended from the
MPC model with the introduction of Plücker parameteriza-
tion by Zhang et al. (2019a). They also develop a simple
6×6 intrinsic matrix which encapsulates all the six intrinsic
parameters. A linear constraint and a ray–ray cost function
are established for linear initial solution and non-linear opti-
mization respectively. Based on ray-space projection model,
Zhang et al. (2020) propose the ray-space epipolar geometry
to intrinsically describe the relation between two light fields.

Existing LFC calibration algorithms are conducted with
the help of special calibration targets. Even only a single
printed checkerboard is needed, the prior calibration is still
time-consuming, let alone to capture the additional light
fields for calibration before applying multi-view light field
tasks. A self-calibration algorithm specifically designed for
an LFC is important to reduce the workload of laborious
calibration.

2.3 Self-Calibration

Traditional self-calibration has gained increasing attentions
since the seminal work presented by Maybank et al. (1992).
Existing approaches can be roughly divided into three cat-
egories: (1) direct method for estimating dual image of
the absolute conic (DIAC) based on the Kruppa’s equa-
tion (Luong and Faugeras 1997; Seo et al. 2001; Paudel
and Van Gool 2018); (2) stratified method for estimating the
plane at infinity based on Modulus constraint followed by
solving DIAC (Hartley et al. 1999; Pollefeys and Van Gool
1999; Nistér 2004; Chandraker et al. 2007b; Gherardi and
Fusiello 2010); (3) joint estimation of both the plane at
infinity and DIAC in the form of dual image of the abso-
lute quadric (DIAQ) (Triggs 1997; Chandraker et al. 2007a;
Habed et al. 2014). In order to increase numerical stability
and find theminimal case for self-calibration, algebraic poly-
nomial methods are involved (Paudel and Van Gool 2018;
Larsson et al. 2018). Gurdjos et al. (2009) try to add spectral
constraints in self-calibration algorithm to avoid ambiguous
motion sequences and increase the numerical stability.

A seemingly straightforward choice for self-calibrating
an LFC is to consider it as a direct extension of that for a
single pinhole camera, given that an LFC is equivalent to
a collection of pinhole cameras. Dealing with sub-aperture
images independently, however, incurs burdensome pro-
cesses. Moreover, an LFC is also a special design whose
principle points are regularly arranged on a plane and this
arrangement remains constant among light fields, which
provides geometric constraint for feature extraction and
self-calibration. For efficient use of abundant and regular
rays captured by an LFC, it is necessary to uniformly pro-
cess a light field as a whole. Inspired by the traditional
self-calibration, a ray-space homography is established to
decompose ray-space infinity homography and specifically
derive rays of the absolute conic for an LFC.

3 Ray-Space Homography

A traditional 2D camera is a mapping between the 3D scene
point and a 2D image point, as described by Hartley and
Zisserman (2003), while compact LFCs are innovated from
the traditional 2D camera with a similar but different way
to record 3D scene. An LFC attaches to a micro-lens array
in front of the sensor enables 3D reconstruction of the scene
from a single photographic exposure, because it collects rays
emanating from the scene point at different directions. To
simplify the discussion of geometric analysis in the following
section, a pixel captured by an LFC is generalized to a 4D ray
from a 3D point (Ng 2006) in contrast with a 2D image point
for a traditional camera. With the angular sampling of the
light field, the ray captured by an LFC is usually represented
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Table 1 Definitions of notations used in the paper

Notation Definition

l = (i, j, u, v)� Indexed pixel of the light field in light
field coordinate frame

r = (s, t, x, u)� Generalized ray in camera coordinate
frame

L = (n�, p�)� Plücker coordinates of the ray l captured
by an LFC, where n and p are moment
and direction vectors

R = (m�, q�)� Plücker coordinates of the ray r in the
space, where m and q are moment and
direction vectors

K = diag(K i j , K uv) 6 × 6 Ray-space intrinsic matrix for an
LFC, which is decomposed as block
matrices K i j and K uv

R = (r1, r2, r3) Rotation matrix

t Translation vector

P 6 × 6 ray-space projection matrix

H 6 × 6 ray-space homography matrix

H∞ 6 × 6 ray-space infinity homography
matrix

ω = K�K Rays of the absolute conic (RAC)

by l = (i, j, u, v)� ∈ R
4 in a two-parallel-plane parame-

terization (Levoy and Hanrahan 1996), where (u, v)� refers
to relative image points of a pinhole camera with the projec-
tion center at (i, j, 0)�, as shown in Fig. 3. Each independent
view point (i, j)� corresponds to a sub-aperture image. Sub-
sequently, with the help of shifted view points, an LFC can
also be considered as an array of pinhole cameras regularly
arranged on the view plane. Inversely, the traditional cam-
era is the specialization of the LFC to the case of only one
projection center (0, 0, 0)� on the view plane (Zhang et al.
2019c).

In this section, a light field is described as a collection
of rays, which is represented via Plücker parameterization.
A ray–ray correspondence indicates two rays from the same
3D point but sampled by two light fields. Based on the ray-
space projection matrix, ray-space homography is derived to
describe the transformation of Plücker ray between different
light field coordinate frames. Ray-space infinity homogra-
phy is then decomposed from ray-space homography. Table
1 gives the definitions of notations used in the following sec-
tions.

3.1 Plücker Parameterization of Ray

A rigid body in 3D projective space is well-known to have
six degrees of freedom (three for rotation and three for trans-
lation), while a ray (line) has only four degrees of freedom
(Hartley and Zisserman 2003). It is hard to linearly formu-
late transformations of rays, such as rotation and translation.

Fig. 2 Plücker parameterization of the ray. A ray can be represented by
its direction q and a point (s, t, 0)� on the ray. The Plücker coordinates
of the ray is defined as R = (m�, q�)�, where m = (s, t, 0)� × q
indicates the moment vector and be perpendicular to q, i.e. m�q = 0

Considering that a light field typically represents a collection
of rays in 3D projective space, we need a new mechanism
to parameterize arbitrary rays. Consequently, the approach
we will take is to represent a ray in free space by Plücker
parameterization. It providesmathematically elegant and lin-
ear equations for transformations of rays. In addition, Plücker
coordinates are a homogeneous parameterization to unam-
biguously represent a ray in 3D projective geometry. We will
briefly introduce Plücker parameterization of rays as follows.

Suppose a ray r in 3Dprojective spacedenotes (s, t, x, y)�
in a two-parallel-plane parameterization, where (s, t)� and
(x, y)� indicate the view point (positional information of
r) and relative image point (directional information of r)
respectively. A ray r can be represented by its direction
q = (x, y, 1)� and a point (s, t, 0)� that it passes through.
In Plücker parameterization, the ray is defined as a pair of
vectors, namely a moment vector m ∈ R

3\{0} and a direc-
tion vector q ∈ R

3, as shown in Fig. 2. Note that, themoment
vector is the cross product between the direction of the ray
and arbitrary point on the ray. In other words, the moment
vector m is perpendicular to the plane containing the ray and
the origin, that is m�q = 0, as shown in Fig. 2. In summary,
the moment vector and the direction vector of arbitrary ray
are defined as (Pottmann and Wallner 2009),

{
m = (s, t, 0)�×(x, y, 1)� = (t,−s, sy − t x)�

q = (x, y, 1)�
, (1)

where R = (m�, q�)� is Plücker coordinate. The Plücker
coordinates are homogeneous coordinates. In upcoming
equations, the calligraphic symbol, such as R for the ray
r , indicates the Plücker coordinates obtained by stacking the
moment vector on top of the direction vector.

For the sake of discussions in the following section, we
list the relevant equations. The point represented by a homo-
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geneous vector (X�, X4)
� lies on the ray R iff

− X4m + X × q = 0, (2)

The matrix form is defined as,

(−X4 I [X]×
)R = 0, (3)

where [ · ]× denotes the vector cross product (Hartley and
Zisserman 2003).

Two rays R1 and R2 given in the same coordinate frame
intersect iff

q2
�m1 + m2

�q1 = 0. (4)

3.2 Ray–Ray Correspondences

For traditional pinhole cameras, a 3D scene point is projected
to a pixel on the 2D image plane. The relations between
two images taken from different view points is established
by finding pixel-pixel correspondence relating to the same
3D scene point. In contrast, a light field is represented as
a collection of rays. The ray with Plücker coordinates is a
basic algebraic entity of a light field. With the help of shifted
views in a light field, multiple rays emanating from the same
3D point are sampled. Consequently, the ray–ray correspon-
dences between two light fields are defined as two sets of
rays with Plücker coordinates,

{Li }i=1,...,n ←→
{
L′

j

}
j=1,...,m

, (5)

whereLi andL′
j are from the same 3D point but are recorded

in different light fields. L = (n�, p�)� is the Plücker coor-
dinates of the ray l = (i, j, u, v)� captured by an LFC.
As mentioned in Sect. 3.1, n = (i, j, 0)� × (u, v, 1)� =
( j,−i, iv − ju)� and p = (u, v, 1)� indicate the moment
and direction vectors of the Plücker ray L.

3.3 Ray-Space ProjectionMatrix

According to Zhang et al. (2019a), with the introduction
of Plücker parameterization, the ray-space projection (RSP)
matrix P ∈R

6×6 is proposed for an LFC to describe the ray-
ray transformation from the rayL = (n�, p�)� captured by
an LFC to the generalized rayR = (m�, q�)� in 3D space,

R =
[

R E
O3×3 R

]
KL, (6)

where E = [t]×R is the essential matrix. R∈ SO(3) and t∈
R
3 refer to the rotation and translation of anLFC respectively.

Fig. 3 LFC intrinsic parameters.A ray is represented as its intersections
on the view plane (green dot) and image plane (blue dot). (i, j)� on
view plane indicates the view point. (u, v)�, which is relative to the
intersection (black dot) of optical axis placed at (i, j, 0), denotes the
direction of the ray. (ki , k j ) are the scale factors on view plane (i.e.
baseline of an LFC), and (ku , kv) for the image plane (i.e. focal length
of an LFC). (− u0

ku
,− v0

kv
) is the principle point of sub-aperture image,

which implies the offset between view plane and image plane (Color
figure online)

In addition, K ∈ R
6×6 is defined as the ray-space intrinsic

matrix with the following format,

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

k j 0 0 0 0 0
0 ki 0 0 0 0

−k j u0 −kiv0 ki kv 0 0 0
0 0 0 ku 0 u0
0 0 0 0 kv v0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

=
[

K i j O3×3
O3×3 Kuv

]
, (7)

which contains all six LFC intrinsic parameters (ki , k j , ku ,
kv , u0, v0), as shown in Fig. 3. (ki , k j ) are the scale factors on
view plane, namely baseline of an LFC. (ku, kv) are the scale
factors on image plane. (− u0

ku
,− v0

kv
) can be considered as the

principle point of a sub-aperture image. It also implies the
offset between the two-parallel-plane. This matrix describes
the ray sampling of an LFC between light field coordinate
frame and camera coordinate frame.

Moreover, K can be decomposed as a lower triangular
block matrix K i j ∈R

3×3 and a upper triangular block matrix
K uv ∈ R

3×3. An important property of K can be observed
for the equation derivation in Sect. 4,

Property 1 Block intrinsic matrices K i j and K uv are orthog-
onal, i.e. K i j K�

uv = K uvK�
i j = ki kv I .

3.4 Ray-Space Homography Constraint

Instead of treating an LFC as a collection of perspective cam-
eras independently for self-calibration, we develop a unified
framework that considers all rays captured by an LFC as a
whole and propose ray-space homography constraint.
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Corollary 1 Consider rays L and L′ sampled by two light
fields intersecting at a single point, the ray-space homogra-
phy constraint (RSHC) is,

p�K−1
i j RK i jn′+ p�K−1

i j EK uv p′+n�K−1
uv RK uv p′ = 0,(8)

where L = (n�, p�)� and L′ = (n′�, p′�)�.

Proof Given RSP matrices for two light field, the light field
coordinate frame of the first light field is assumed as the
reference,

P =
[
I O
O I

]
K , P ′ =

[
R E
O R

]
K . (9)

We first back-project a ray L′
2 in the second light field

coordinate frame, and ray-trace to a ray L2 in the first light
field coordinate frame according to Eq. (9), named as ray-
space homography H = P−1P ′,

L2 = K−1
[
R E
O R

]
K︸ ︷︷ ︸

=: H

L′
2, (10)

which describes the ray–ray transformation in 3D projective
space P3, as shown in Fig. 4. In order to provide connivence
for the self-calibration algorithm to calculate relative poses,
we partition Eq. (10) into 2 × 2 block matrices,

H =
[

H11 H12

O3×3 H22

]
=

[
K−1

i j RK i j K−1
i j EK uv

O3×3 K−1
uv RK uv

]
, (11)

where H i j is a 3 × 3 block matrix.
Then, let the re-traced ray L2 intersect L1 at 3D point

X . Substituting Eq. (10) into Eq. (4), we obtain RSHC and
rewrite it in a block matrix form,

[
p� n� ]

K−1
[
R E
O R

]
K

[
n′
p′

]
= 0, (12)

which needs to be satisfied by every ray–ray correspondence
L ↔ L′ intersecting at a 3D point. 	


In geometry, the ray with Plücker coordinates satisfies
self-constraint of Klein quadric in P

5. It can also be con-
sidered as a point on Klein quadric in P

5. H describes the
ray–ray projective transformation between different coor-
dinate frames in P

3. Geometrically, H also represents the
point-point hyper-transformation on Klein quadric in P

5.
Moreover, Bartoli and Sturm (2001, 2004) derive the 3D line
motion matrix based on Plücker coordinates to estimate the
relative motion of the calibrated camera. They also analyze
the linear representation of 3D lines under different trans-
formations (e.g. Euclidean, similar, affine and homography),

Fig. 4 Ray-space homography. Ray-space homography represents the
transformation of a Plücker ray between different light field coordinate
frames. The second light field (on the left) may be rotated and corrected
to simulate a pure translation. The ray-space homography H can be
divided into ray-space infinity homography H∞ (first) and ray-space
translation homography Ht (second)

which is similar to ray-space homography of rays. Accord-
ing to the definition proposed by Bartoli and Sturm (2001,
2004) and Property 1, ray-space intrinsic matrix could be
considered as a specialization of the 3D line homography
matrix. Note that Plücker transformation related to extrinsic
parameters is Euclidean transformation, the geometric inter-
pretation of ray-space homography is also defined as the 3D
line homography matrix of the Plücker ray between different
coordinate frames.

3.5 Ray-Space Infinity Homography

According to Eq. (10), the ray-space homography H only
depends on the intrinsic parameters of an LFC and relative
pose. Given two arbitrary light fields captured by an LFC, we
may rotate the LFC used for the second light field so that it
is aligned with the first light field. This rotation may be sim-
ulated by applying a homography to the second light field.
Then, we utilize the homography of pure translation to trans-
form the two light fields in a uniform coordinate frame, as
shown in Fig. 4. Consequently, according to the pure rotation
and pure translation, H can be divided into two parts,

L = K−1
[
I [t]×
O I

]
K︸ ︷︷ ︸

=: H t

K−1
[
R O
O R

]
K︸ ︷︷ ︸

=: H∞

L′, (13)

where one can see the decomposition into translation homog-
raphy Ht (partitioned first) and rotation homography H∞
(partitioned second), as shown in Fig. 4. Note that Ht indi-
cates the homography generated by pure translation and does
not influence the direction of rays.
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We then focus on the analysis of rotation homography
H∞. Consider (X�, 0)� is the homogeneous coordinates of
point on the plane at infinity in the first light field coordinate
frame,L′ is the ray in the second light field coordinate frame
which passes through this point. Substituting Eq. (13) into
Eq. (3), we have,

[
O [X]×

]
Ht H∞L′ = [

O [X]×
]
H∞L′ = 0, (14)

where Ht does not influence the direction vectors of rays
from the plane at infinity, therefore it could be eliminated.

Remarks we can conclude that, for any ray–ray correspon-
dences intersecting at points on the plane at infinity, RSHC
does not rely on the translation, only on the rotation and
LFC intrinsic parameters. Alternatively, H∞ is obtained if
the translation t is 0, which corresponds to a rotation about
the LFC. Thus H∞ is ray-space homography that relates
arbitrary rays if the LFC’s motion is a pure rotation.

In summary, the plane at infinity is a particularly impor-
tant plane for self-calibration and metric reconstruction. The
ray-space infinity homography H∞ represents the ray–ray
transformation on the plane at infinity. In addition, accord-
ing to the definition of H∞, i.e. Eq. (14), it is interesting to
note that H∞ is a conjugate rotation which is important for
self-calibration.

3.6 Rays of the Absolute Conic

The ray-space infinity homography gives additional insight
into the LFC self-calibration. The absolute conic is on the
plane at infinity such that a novel concept of “rays of the abso-
lute conic” (RAC) is defined, just as what has been developed
for the traditional camera, namely,

Definition 1 The rays of the absolute conic (RAC) is the
quadric ω = K�K in P5.

The RAC ω depends only on the intrinsic parameters K of
an LFC, and it does not depend on the LFC orientation or
position. Since ω is the rays of the absolute conic, it may be
thought of as a convenient algebraic entity, and will be used
in computations on LFC self-calibration.

According to the orthogonal rotation, we subsequently
derive an important corollary of RAC ω,

Corollary 2 The projection of RAC ω under RSIH H∞ is
equal to the RAC,

H�∞ωH∞ = ω. (15)

Remarks It is well known that the image of the absolute
conic (IAC) is the key idea for the traditional self-calibration
method of a pinhole camera, whereas for an LFC this role

is played by the rays of the absolute conic (RAC). Eq. (15)
could be utilized to calculate intrinsic parameters of an LFC
once H∞ is estimated. In addition, the presences of H∞ may
be expressed by saying that a RAC transforms invariantly. It
is also worth noting that IAC for the traditional camera is
a special case of RAC for the LFC when there is only one
projection center on the view plane according to Eq. (15).

4 Self-Calibration Algorithm for LFC

For the traditional camera, infinity homography is the key
to solve the self-calibration problem. It is estimated based
on Modulus constraint which is a quartic polynomial or
the special imaging condition (e.g. pure rotation). In con-
trast, considering that abundant and regular rays recorded by
the LFC, we linearly establish RSHC and decompose RSIH
for robust self-calibration. Also, RAC is retrieved from the
RSIH. We finally design an effective self-calibration algo-
rithm specifically for an LFC, including linear initialization
and non-linear optimization.

4.1 Ray-Space Homography Estimation

Given a ray–ray correspondence (n�, q�)� ↔ (n′�, q ′�)�,
using Kronecker product operator ⊗, we re-state Eq. (8) as,

(
p� ⊗ n′�, p� ⊗ p′�, n� ⊗ p′�) �H = 0, (16)

where �H refers to a 27-vector made up of the non-zero ele-
ments of H in row-major order respectively. Considering N
sets of n×m ray–ray correspondences (N × n×m ≥ 26) in
the form of Eq. (5), Eq. (16) is stacked as a homogeneous set
of (N×n×m)×27 linear equations, i.e., A �H = 0.Ray-space
homography estimation is numerical stability with sufficient
ray–ray correspondences. Then �H can only be determined up
to a scale factor via standard SVD (Hartley and Zisserman
2003). Once H is computed from considerable RSHCs, we
can directly decompose RSIH H∞ according to Eq. (13).

Degeneracy It is worth noting that previous work (Li et al.
2008) on motion estimation from pre-calibrated generalized
cameras proposes some degenerate cases, i.e. non-overlap
multi-cameras and axial cameras, which can not be solved by
standard SVDdirectly. For this reason, they propose a numer-
ical method where first the essential matrix is recovered,
from which one obtains the rotation using a decomposition
step. However, the special design of the LFC permits the
scene to be captured by different view points during a single
shoot. Sub-aperture images share overlapping field-of-view
and regularly arrange on a plane. For this reason, RSHCs
generated by the ray–ray correspondences can not arise these
degeneracies.
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In addition, RSHC also contains intrinsic matrix K com-
pared with the generalized epipolar constraint, according to
Eq. (8). It also decides the ambiguity of the solution will
not happen in RSHCs. Consequently, a unique solution of
Eq. (16) is readily solvable via the standard SVD method.

Normalization Considering the huge difference between
angular resolution and spatial resolution of a light field,
ray normalization specifically designed for an LFC is intro-
duced to improve the numerical stability of the ray-space
homography estimation. In a traditional camera, image nor-
malization is utilized to improve accuracy and tackle less
well-conditioned problems, like the linear estimation of the
homography or the fundamentalmatrix. Similar to traditional
normalization, two similarity transformations T and T ′ on
Plücker coordinates, consisting of scale factors on view plane
and image plane and a translation on image plane, are com-
puted according toEq. (7).Note that, the scale factors on view
plane or image plane are identical. It is convenient to establish
Eq. (7) which needs to satisfy the condition ku/kv = ki/k j .
The ray normalization is partly summarized in Alg. 1 and
described in detail as follows,

– NormalizeRays. Transform the rays L to a new sets of
rays L̃, so do rays L′, namely L̃ = TL and L̃′ = T ′L′.

– EstimateRSH. Apply Eq. (16) to linearly estimate H̃ via
SVD according to ray–ray correspondences {L̃} ↔ {L̃′}.

– DenormalizeRSH. Set the ray-space homography
H = 1

t ′22t ′44
T ′� H̃T , where t ′i j is i-th row and j-th column

element of T ′.

Ray normalization is an essential step in ray-space homog-
raphy estimation. It must not be considered optional. In
addition, this ray normalization can be applied to various
linear estimation methods of light field imaging.

Ray-Space Infinity Homography Estimation After the
computation of H from ray–ray correspondences, let us
revisit the estimated RSIH Ĥ∞. As mentioned above, it has
been linearly solved and decomposed up to a scale factor
by Eq. (16). We first eliminate the scale factor based on
conjugate condition. Specifically, a rotation matrix R has
eigenvalues (1, eiθ , e−iθ ). θ refers to the angle of rotation
about a rotation axis v, which is satisfied by Rv = v (Hart-
ley and Zisserman 2003). The rotation can also be calculated
from θ and v. Given that H∞ is also a conjugate rotation
(i.e., a similar matrix of rotation) according to Eq. (13), its
eigenvalues are preserved under a conjugate relationship so

the eigenvalues of Ĥ∞ are also (1, eiθ , e−iθ , 1, eiθ , e−iθ )

up to a common scale. Subsequently, the scale factor is com-
puted from the average of real eigenvalues of Ĥ∞. Overall,
the accurate H∞ is solved without scale by the conjugate
relationship, so does H . Note that, the complex eigenvalues
also determine the angle θ through which the LFC rotates. It
means the rotation can be directly solved with H∞.

Special Imaging Conditions In this part, we begin the con-
sideration of self-calibrating an LFC under special imaging
conditions. The situation first considers here is the one in
which the LFC rotates about its center but does not translate
(t = 0), i.e. pure rotation. This situation occurs frequently.
According to Eqs. (11) and (13), the ray-space homography
H is equivalent to RSIH H∞, namely H = H∞. Con-
sequently, we could directly estimate RSIH without scale
based on Eq. (16) and conjugate rotation. In addition, pure
rotation is a convenient motion to simplify the formulation
of ray-space homography and further self-calibrate an LFC.
In practice, when the LFC is not completely rotated about
its center, the translation compared to the distance of scene
points is small and then could be neglected. The constrained
nature of the motion makes self-calibration of the LFC sim-
pler. However, compared with complex infinity homography
estimation for traditional self-calibration, the simplification
for LFC’s self-calibration algorithm is not significant. RSIH
can be easily extracted from ray-space homography due to
the special design of the LFC.

Secondly, a case of some practical importance is that of
an LFC translating without rotation. Suppose the motion of
an LFC is a pure translation, substituting R = I into Eqs.
(11) and (13), H can be simplified as ray-space translation
homography Ht , that is H = Ht . However, according to Eq.
(14), Ht does not affect the direction vectors of rays from
the plane at infinity. It means that we can not use ray–ray
correspondences under pure translation to compute RSIH,
which is all that is needed to further estimate RAC and self-
calibrate an LFC. In practice, slightly rotating LFC to record
light fields is necessary for self-calibration.

4.2 Closed-Form Initialization

It is easy to verify that Eq. (15) is not influenced by ki and
k j according to Property 1. In general, the RAC ω is linearly
solved in form of Kronecker product ⊗. However, RAC ω is
a symmetric matrix so that we revise Eq. (15) in the form of
Ab = 0 for simplicity and robustness,
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h211 − 1 h212 2h11h13 2h12h13 h213
h221 h222 − 1 2h21h23 2h22h23 h223

h11h31 h12h32 h11h33 + h31h13 − 1 h12h33 + h32h13 h13h33
h21h31 h22 h21h33 + h31h23 h22h33 + h32h23 − 1 h23h33
h231 h232 2h31h33 2h32h33 h233 − 1

h11h21 h12h22 h11h23 + h21h13 h12h23 + h22h13 h13h23
h241 − 1 h251 2h41h61 2h51h61 h261
h242 h252 − 1 2h42h62 2h52h62 h262

h41h43 h51h53 h41h63 + h43h61 − 1 h51h63 + h53h61 h61h63
h42h43 h52 h42h63 + h43h62 h52h63 + h53h62 − 1 h62h63
h243 h253 2h43h63 2h53h63 h263 − 1

h41h42 h51h52 h41h62 + h42h61 h51h62 + h52h61 h61h62

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

k2u
k2v
kuu0
kvv0

1 + u20 + v20

⎤
⎥⎥⎥⎥⎦ = 0, (17)

where hi j denotes the i-th row and j-th column element of
H . A is a 12 × 5 matrix whose rank is sufficient for solv-
ing b with an unknown scaling. It is interesting to note that
a non-zero solution b can be obtained by at least one RSIH
(estimated from a pair of light fields). Note that b includes 5
distinct non-zero elements of a symmetric matrix K�

uvK uv .
K̂ uv is linearly solved from K�

uvK uv by Cholesky factoriza-
tion (Hartley and Zisserman 2003).

As discussed in Sect. 3, ray-based RAC and RSIH could
be regarded as the generalization of point-based IAC and
infinity homography in the higher dimension. The tradi-
tional self-calibration algorithm is therefore the special case
of the proposed algorithm when an LFC has only one view
(i.e., traditional camera) according to Eq. (17). In the tradi-
tional self-calibration algorithm, 3 × 3 infinity homography
matrix is estimated from point-point correspondences and
used to linearly calculate IAC and intrinsic parameters, as
mentioned by Hartley and Zisserman (2003). It is common
sense that traditional self-calibration is numerical instabil-
ity, but the proposed self-calibration algorithm can provide
a stable linear solution based on two reasons. Firstly, as dis-
cussed in Sect. 4.1, sufficient ray–ray correspondences are
used to stably and accurately compute ray-space homogra-
phy. Themore accurate H , themore stable RAC and intrinsic
parameters can be obtained according to Eq. (17). Secondly,
considering P denotes the number of RSIH, (12 × P) × 5
linear equations are solved to compute RAC,while the size of
linear equations for traditional self-calibration is (6×P)×5.
The higher dimension means that RAC estimation is a more
stable solution compared with IAC estimation.

Based on the estimated intrinsic parameters K̂ uv and ray-
space homography H , rotation R and translation t are further
computed,

R = 1

2

(
K̂

−�
uv H11 K̂

�
uv+ K̂ uvH22 K̂

−1
uv

)
, (18)

[t]× = K̂ i jH12 K̂
−1
uv R� = λK̂

−�
uv H12 K̂

−1
uv R�, (19)

where H i j indicates the i-th row and j-th column 3×3 block
matrix of H , as shown in Eq. (11). According to Property
1, λ = ki kv . Considering H∞ and K uv are accurate without
scaling, each part of Eq. (18) is already an orthogonal rota-
tionmatrix with determinant unit. Therefore, there is no need
to orthogonalize the estimated rotation. The rotation averag-
ing in Eq. (18) can be computed according to the method
proposed by Hartley et al. (2013).

Remarks λ is an empirical parameter without physical mean-
ing that helps us to uniform the relative translation between
each pair of light fields to global scaling. Since the tra-
ditional self-calibration method cannot recover a uniform
scaling directly, the translation between the first and sec-
ond cameras sets to a unit vector. However, due to special
design of an LFC, the baseline (i.e., intrinsic parameters
ki and k j ) could be considered as the translation between
neighboring sub-aperture images (Bok et al. 2017; Zhang
et al. 2019c). More importantly, it keeps constant during the
self-calibration of an LFC, so λ is constant. Consequently,
compared with the traditional self-calibration, the proposed
LFC self-calibration is easy to estimate the translation up to
a uniform scaling for 3D metric reconstruction. In addition,
since the Euclidean distance of static scenes is not provided
in advance, ki and k j as the translation between sub-aperture
images cannot be recovered, as shown in Eq. (17). According
to the observation about LFC calibration results, we conclude
that kuki = kv

k j
= rm , where rm denotes the radius of themicro-

lens in pixels. Consequently, we empirically set λ to kukv

rm
.

4.3 Non-linear Optimization

The initial solution is then refined via non-linear optimiza-
tion. ConsideringRSHC constrains the intrinsic and extrinsic
parameters well, we minimize the geometrically more mean-
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ingful Sampson error based on RSHC and {Li }n ↔ {L′
j }m

of N 3D points,

N∑ m∑
i

n∑
j

∣∣∣∣( p�
i , n�

i

)
H

(
n′�

j , p′�
j

)�∣∣∣∣∥∥∥H� (
p�
i , n�

i

)�∥∥∥ +
∥∥∥∥H (

n′�
j , p′�

j

)�∥∥∥∥
, (20)

where ‖·‖ denotes L2-norm, and H is formulated by K , R
and t according to Eq. (10). Compared with the re-projection
error (Zhang et al. 2019c) or ray-projection error (Dansereau
et al. 2013), Sampson error does not depend on the unstable
reconstructed 3D points within a light field. Also, compared
with algebraic distance RSHC, the Sampson distance is the
first-order approximation of the ray–ray geometric distance.
According to the geometry definition of Plücker coordinates,
Eq. (20) which describes the ray–ray Sampson distance in P3

is also geometrically equivalent to the point-point Sampson
distance in P

5. Moreover, the ray–ray Sampson distance in
Eq. (20) for light fields is also applied to outliers detection
within a RANSAC framework (Fischler and Bolles 1981).
We linearly estimated the ray-space homographymatrix from
random ray–ray correspondences. The Sampson distances
of all ray–ray correspondences are then calculated, and the
outliers are distinguished and discarded with a given thresh-
old. The radial distortion caused by main lens is neglected
in the proposed self-calibration method. Consequently, the
non-linear optimization excludes the distortion coefficients.

Considering the assumption of constant intrinsic parame-
ters during self-calibration, multiple light fields are recorded
to improve the effectiveness and robustness of the proposed
self-calibration method. In order to extend Eq. (20) to multi-
ple light fields, we calculate ray–ray Sampson distances from
random pairs of light fields to select arbitrary light field in
the pair with minimum distances as the reference light field.
In practice, we capture P + 1 light fields using a same LFC.
For each pair of reference light field and p-th light field,
1 ≤ p ≤ P , the RSIH is first estimated. With the increasing
RSIHs, Eq. (17) is then stacked as 12 × P linear equations
to obtain robust intrinsic parameters. The relative pose of
p-th light field, consisting of R p and t p, is subsequently esti-
mated. For each pair of light fields, a non-linear cost function
is established according to Eq. (20). Finally, P cost functions
are accumulated together to optimize intrinsic and extrinsic
parameters. To minimize the above non-linear functions, we
parameterize rotation R with its Rodrigues form (Faugeras
1993). Then we utilize Levenberg-Marquardt optimization
solver lsqnonlin in Matlab.

Once the LFC intrinsic and extrinsic parameters are deter-
mined, the ray-space projection matrices can be rebuilt
according to Eq. (7). Subsequently, the ray–ray correspon-
dences of a 3D point are transformed in a common camera
coordinate frameviaEq. (10). For a certain 3Dpoint observed

by generalized rays, according to Eq. (3), it can be recon-
structed,

( [
q
]
× m

) [
X
1

]
= 0. (21)

Althoughwehave removedmostmismatched ray–ray cor-
respondences, considering the small baseline of an LFC, the
triangulation is adopted from all ray–ray correspondences
according to Eq. (21) within a RANSAC framework based
onmidpoint method (Hartley and Sturm 1997). Similarly, we
employ the Levenberg-Marquardt algorithm to refine the tri-
angulated 3D points via minimizing the re-projection error.
The self-calibration and 3D metric reconstruction algorithm
for an LFC is summarized in Alg. 1.

Algorithm 1 LFC Self-Calibration and 3D Reconstruction.
Require: Ray–ray correspondences {L′} ↔ {L} of P + 1 light fields
Ensure: Intrinsic parameters (ki , k j , ku, kv, u0, v0),

Extrinsic parameters R p, t p , (1 ≤ p ≤ P),
3D metric reconstruction X .

1: for p = 1 to P do
2: L̃ = NormalizeRays(L, T p)

3: L̃′ = NormalizeRays(L′, T ′
p)

4: H̃ p = EstimateRSH(L̃, L̃′) � Eq. (16)
5: H p = DenormilizeRSH(H̃ p, T p, T ′

p)

6: H∞,p = DecomposeRSIH(H p) � Eq. (13)
7: end for
8: ω = FormulateRAC(

⋃P
p=1 H∞,p) � Eq. (15)

9: K uv = CalculateIntrin(ω) � Eq. (17)
10: for p = 1 to P do
11: (R p, t p) = CalculateExtrin(H p, K uv) � Eqs. (18, 19)
12: end for
13: OptimizeSampsonError(K ,

⋃P−1
p=1 (R p, t p)) � Eq. (20)

14: for p = 1 to P do
15: P p = FormulateRSH(K , R p, t p) �Eq. (7)
16: end for
17: X = Triangulate(KL,

⋃P
p=1 P pL′) �Eq. (21)

18: OptimizeReProjectionError(X).

5 Experiments

In this section, we experimentally evaluate the proposed
self-calibration algorithm on both synthetic LFCs and com-
mercial LFCs. To evaluate the performance of the proposed
method, similar to Li et al. (2008), direction errors of rota-
tion and translation are defined when ground truth data is
available,

eR = arccos (trace(R�RGT )−1)/2, (22)

et = arccos(t� tGT /(‖t‖‖tGT ‖)). (23)
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5.1 Simulated Data

In order to evaluate the performance of the proposedmethod,
we simulate a realistic LFC, close to a Lytro Illum, with
11×11 views, a baseline of 0.36mm, a focal length of 500,
and the sub-aperture image resolution of 540 × 360. The
rotation angles between a couple of light fields are randomly
generated from −30◦ to 30◦, while the translation t is ran-
domly chosen in the cube [−0.1, 0.1]3. Besides, the depth
of 3D points is set to a range between 0.2m and 0.8m. We
randomly generate ray–ray correspondences from these 3D
points based on camera parameters so that we obtain plausi-
ble input close to real-world scenarios.

Numerical Stability.
In this experiment, we evaluate the numerical stability

of the proposed closed-form initialization. We generate ran-
dom but feasible noise (0.1-1.0 pixels) simulated problem
instances. Geometrically realistic ray–ray correspondences
between two light fields are involved in the linear solution.
Figure 5presents the distributionof the log10 relative errors of
intrinsic parameters and the histogram of rotation and trans-
lation direction errors for 10, 000 instances. As shown in
Fig. 5, three combinations of 3D points and ray–ray cor-
respondences of each 3D point are performed. We can see
that the numerical stability and accuracy are obviously influ-
enced by the number of ray–ray correspondences (i.e. the
number of 3D points multiple the number of ray–ray cor-
respondences of each 3D point). We use log10 to evaluate
the relative error of intrinsic parameters. As shown in Fig. 5,
the peaks of error distributions are increased with the num-
ber of ray–ray correspondences. Moreover, as shown in Fig.
5, the more ray–ray correspondences, the higher distribu-
tion of small direction errors. All results demonstrate the
numerical stability of the proposed linear initialization. The
mean errors of each parameter are also listed in Table 2. The
relative errors of intrinsic parameters and direction errors
of extrinsic parameters are decreased with the number of
ray–ray correspondences, which verifies the accuracy of the
proposed linear initialization. Besides, Table 2 also shows the
mean execution time of the linear initialization. According
to Eqs. (16) and (17), the main time complexity is spent on
the solution of H from different ray–ray correspondences.
The execution time of the linear solution increases with the
ray–ray correspondences when the number of light field pairs
is constant. In summary, these linear solutions show that the
proposed linear algorithm does not suffer from numerical
instability and is a good enough starting guess for the non-
linear optimization Eq. (20).

Noise Resilience. In this experiment, we generate one pair of
light fields to examine the noise resilience on the proposed
method. Depending on the experiment, different levels of
white Gaussian noises varying from 0.1 to 1.0 pixels with a

Table 2 Mean relative errors of intrinsic parameters, mean direc-
tion errors of extrinsic parameters and mean execution time of linear
initialization under different number of 3D points and ray–ray corre-
spondences of each 3D point

20 points 30 points 20 points
20 rays 20 rays 50 rays

ku 6.8567 1.8197 1.1679

Intrinsic kv 5.7910 1.9498 0.8622

Unit: % u0 12.6815 4.4960 3.0303

v0 15.9066 4.8713 2.7890

Extrinsic R 1.2806 0.4184 0.2692

Unit: deg t 10.2459 4.5236 3.1055

Time (Unit: s) 0.0561 0.1853 0.3055

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Distribution of relative errors of intrinsic parameters and direc-
tion errors of rotation and translation for 10, 000 random simulated
linear solution instances

0.1 pixels step are then added to the direction of projected
rays. For each noise level, we carry out 150 trials, each of
which includes three combinations of 3D points and ray–ray
correspondences, as shown in Fig. 6. Figure 6 summarizes
the non-linear optimized results compared with ground truth,
including mean relative errors of intrinsic parameters and
mean direction errors of rotation and translation. It certi-
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Performance evaluation of intrinsic and extrinsic parameters on
the simulated data with different levels of noise σ

fies that the errors increase almost linearly with the noise
level. Compared with linear solutions, the mean errors of
each parameter descend obviously, which verifies the effec-
tiveness of non-linear optimization. Meanwhile, the errors
reducewith the number ofRSHCs (i.e. points×ray–ray corre-
spondences). Specifically, for σ = 0.5 pixels which is larger
than normal noise in commercial LFCs, the relative error of
(ku, kv) and (u0, v0) and direction errors of R and t are less
than 0.45%, 0.8%, 0.15◦ and 1.5◦ respectively. It also veri-
fies that the proposed non-linear optimization remains robust
at high noise.

Number of Constraints In this experiment, we investigate the
influence of the number of constraints on the accuracy of
the proposed method. To this end, we vary the number of
light field pairs from 1 to 7. Similarly, three combinations of
the number of 3D points and the ray–ray correspondences
from each point are involved. We execute 100 independent
trials, each of which added with 0.5 pixels Gaussian noise.
The mean relative errors of intrinsic parameters and mean
direction errors of rotation and translation with increasing
light field pairs are shown in Fig. 7. We can see that the
errors of intrinsic parameters decrease significantly, while

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Performance evaluation of intrinsic and extrinsic parameters on
the simulated data with different number of light field pairs

the direction errors are roughly constant. The reason why
the performance of intrinsic parameters is better is related to
increasing equations result stable linear solutions according
to Eq. (17) and hence convergence into better minima.While
the better intrinsic parameters lead to the small improve-
ment of rotation and translation as shown in Fig. 7. With the
increasing constraints, the proposed method presents better
solutions. When the number of light field pairs is more than
4, the errors are descending slower. In summary, all results
demonstrate the effectiveness of the proposed method with
increasing constraints.

5.2 Real Scene

To further substantiate the proposed self-calibration algo-
rithm that experiments on real scene light fields are per-
formed. Using a Lytro Illum, two real scene light field
datasets, named as “Board-1” and “Board-2”, are collected
from different scenes with checkerboard shown in Fig. 9a.
Given that the proposed algorithm is the first attempt to
self-calibrate an LFC, the checkerboard can help to quan-
titatively compare the effectiveness of the proposed method

123



International Journal of Computer Vision (2021) 129:3006–3026 3019

Table 3 Inliers proportion (unit: %) on the collected datasets

Dataset # light fields Inliers proportion

Board-1 10 49.15

Board-2 9 51.60

Toy-1 8 53.04

Toy-2 13 52.93

Toy-3 10 53.13

Teemo-1 13 50.81

Teemo-2 18 51.58

Desk 18 51.56

on intrinsic and extrinsic estimation with the state-of-the-art
LFC calibration method (Zhang et al. 2019c). Considering
the checkerboard may cause concerns on self-calibration,
another six datasets “Toy-1”, “Toy-2”, “Toy-3”, “Teemo-1”,
“Teemo-2” and “Desk” are also captured to demonstrate the
estimated results (both camera parameters and reconstructed
3D structures), as shown in Fig. 10a.

The number of light fields on each dataset is listed in the
second column of Table 3. Taken the small baseline of an
LFC into consideration, the depth of real scenes from an
LFC ranges from 0.3m to 0.8m. In order to demonstrate the
performance of the proposed algorithm, LFC configurations,
such as focal length and zoom factor, are different between
different datasets. Note that, the LFC configurations are con-
stant in a dataset to facilitate self-calibration.

5.2.1 Pre-processing

The pre-processing before LFC self-calibration includes the
raw light field decoding, extraction of ray–ray correspon-
dence and inliers detection.

The raw micro-lens image recorded by an LFC can be
decoded using an open-source toolbox (Dansereau et al.
2013) or Lytro Power Tool (Lytro 2011). However, com-
pared with the open-source toolbox, Lytro Power Tool also
applies rectification, reducing the appearance of lens distor-
tion. As mentioned in Sect. 4, the main lens distortion has
been neglected in the proposed method. Consequently, we
utilize Lytro Power Tool to decode raw data to rectified light
field. The raw data is first de-bayered and pixel-aligned to an
orthogonal grid of sub-images. It is easy to load and interpret
as a 2D array of 2D sub-images. There are 14 × 14 pixels
per sub-image and about 541 × 376 sub-images. In addi-
tion to de-bayering and aligning, the Lytro Power Tool also
applies rectification to reduce the appearance of lens distor-
tion. Considering that marginal sub-aperture images suffer
from severe vignetting and aberrations, the middle 11 × 11
sub-aperture images are used.

To self-calibrate an LFC, sets of rays which correspond
to the same 3D point among light fields are first extracted.
The sub-images of raw data and sub-aperture images of view
points are different visualizations of light field recorded by
an LFC and easy to be generated to describe the rays, as
shown in Ng (2006). However, it is difficult to extract accu-
rate rays in small sub-images. Therefore, similar to methods
in Johannsen et al. (2016) and Nousias et al. (2019), we
extract sparse features from every sub-aperture image in a
light field via Difference of Gaussians (DoG). Different from
the feature extraction for traditional images, light field is
equivalent to a collection of sub-aperture image. The fea-
ture (u, v) extracted on a sub-aperture image of view (i, j)
refers to a ray (i, j, u, v). The features of the central sub-
aperture image are subsequently matched with those of other
sub-aperture images via SIFT (Lowe 2004). Given that the
view points of an LFC are regularly arranged on a plane, we
filter the rays according to the invariant depth and generate
sets of rays in a light field. After extracting the sets of rays
in light fields, the ray–ray correspondences are then matched
between different light fields via SIFT. For efficiency, only
the features of the central sub-aperture images are matched
to associate sets of rays between light fields.

As mentioned in Sect. 4, the Sampson distance of RSHC
can be used to discard the outliers based on a RANSAC
framework. The proportions of inlier ray–ray correspon-
dences are summarized in Table 3. The proposed RANSAC
frameworkwith Sampson distance produces the reliable ray–
ray correspondences for self-calibration. Fig. 8 also partially
illustrates the result of inliers detection on datasets “Toy-2”.
Fig. 8 randomly marks 40 ray–ray correspondences on arbi-
trary sub-aperture images of a pair of light fields. It can be
seen that the rayswithin a light field preserve the depth invari-
ant (i.e. same disparity), and the ray–ray correspondences
between light fields lie in the similar pixel of sub-aperture
images without outliers. Table 3 and Fig. 8 quantitatively and
qualitatively verify the performance of the proposed RSHC
and its Sampson distance on inliers detection, respectively. In
order to intuitively express ray–ray correspondences emanat-
ing from the same 3D scene point, we also randomly draw 5
sets of rays with 3D reconstruction in line form. As shown in
Fig. 8, all rays corresponding to a 3D scene point in both light
fields are utilized for 3D reconstruction. Moreover, datasets
“Board-1” and “Board-2” combined with a checkerboard
may cause concerns about the ray–ray correspondences. It
provides sufficient ray–ray correspondences however intro-
duces more outliers on the checkerboard due to the similar
local structures. It is also demonstrated inTable 3, fromwhich
we can see the proportions of inliers on datasets “Board-1”
and “Board-2” are less than those on datasets “Toy-1”, “Toy-
2” and “Toy-3” with similar scenes.
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Fig. 8 Inliers detection on “Toy-2” based on ray-space homography estimation and its Sampson distance. 40 random inliers are marked on arbitrary
sub-aperture images with colors, wherein 5 sets of ray–ray correspondences connected to the corresponding 3D reconstructed points are drawn in
dashed line form

5.2.2 Self-Calibration

The checkerboards on datasets “Board-1” and “Board-2”
make it possible to compare the proposed self-calibration
meth-od with state-of-the-art calibration method represented
by MPC (Zhang et al. 2019c), treating the latter as the gold
standard. Note that, compared with the isometric parame-
ters obtained by MPC, the proposed LFC self-calibration
algorithm estimates metric parameters due to static scenes
without a known physical size. Neither accurate ray–ray cor-
respondences of corners nor Euclidean distance could be
provided by the checkerboard for self-calibration. Conse-
quently, baselines ki and k j which decide the magnitude of
reconstruction are not compared. In addition to MPC, base-
line methods proposed by Dansereau et al. (2013) and Bok
et al. (2017) are other common LFC calibration methods
using checkerboard. The reasonswhy the proposedmethod is
not comparedwith other baselinemethods have three. Firstly,
theMPCoutperforms comparedwith other baselinemethods,
as demonstrated by Zhang et al. (2019c). Secondly, the 12-
free-parameter model provided by Dansereau et al. (2013)
has redundancy and dependency. Intrinsic parameters esti-
mated by Dansereau et al. (2013) can not be compared with
the results of the proposed self-calibration. Thirdly, the base-
line method proposed by Bok et al. (2017) uses line features
on sub-images to calibrate an LFC. Although it can provide
similar 6 intrinsic parameters compared with the proposed

Table 4 Differences of intrinsic and extrinsic parameters obtained by
the proposed self-calibrationmethod comparedwith state-of-the-art cal-
ibration (Zhang et al. 2019c) on datasets with a checkerboard

Intrinsic Extrinsic
Unit: % Unit: deg

ku kv u0 v0 R t

Board-1 0.8422 0.8567 1.9509 2.0301 0.7866 5.6119

Board-2 1.3603 1.3736 1.5087 1.5556 0.5113 4.3980

method, the checkerboard should be captured under an unfo-
cused status to make the line feature detectable.

Table 4 presents the differences of intrinsic parameters and
relative poses, measured with relative errors (%) and direc-
tion errors (deg), respectively. Overall, the errors in Table 4
are closed to the gold standard except the direction error of
translation. As shown in Eq. (18), the translation is decom-
posed from the estimated essentialmatrix, which includes the
rotation. It results in that the estimated rotation is more accu-
rate than translation, which is also demonstrated in simulated
data. Besides, taken the noise of ray–ray correspondences
into consideration, the results are acceptable. Moreover, the
relative comparisons in Table 4 also demonstrate the per-
formance of RSHCs to constrain the intrinsic and extrinsic
parameters. In addition, Table 5 illustrates intrinsic parame-
ters estimated by the proposed method and MPC calibration
method on datasets “Board-1” and “Board-2”.
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Fig. 9 The central sub-aperture image of the reference light field. The comparison of pose estimation of the proposed self-calibration (colored solid
lines) with that of state-of-the-art MPC calibration (colored dotted lines) (Color figure online)

Table 5 The comparison of intrinsic parameters of the proposed self-
calibration with that of state-of-the-art calibration

Board-1 Board-2

Ours MPC Ours MPC

ku 1.7861e–03 1.8013e–03 1.5585e–03 1.5376e–03

kv 1.8320e–03 1.8164e–03 1.5150e–03 1.5364e–03

u0 –0.4707 –0.4801 –0.4408 –0.4476

v0 –0.3406 –0.3477 –0.3159 –0.3209

As mentioned in Zhang et al. (2019c), (−ki i, −k j j, 0)�
also indicates the translation between sub-aperture images
within a light field which remains constant during self-
calibration. For this reason, it is easy to constrain the
translation between light fields up to a uniform scaling
according to Eq. (19). In order to qualitatively visualize
the differences of relative poses on datasets “Board-1” and
“Board-2”, we respectively illustrate the poses calculated by
the proposed self-calibration and MPC calibration, as shown
in Fig. 9b. Since the proposedmethod ismetrically estimated,

the translation vectors of MPC are scaled so that the transla-
tion vectors of twomethods have the same norm. Clearly, the
poses of the proposed self-calibration method and MPC are
very similar. Although the direction errors of translation are
larger than that of rotation in Table 4, we can see in Fig. 9b
that the direction errors of translation have a smaller effect
on pose visualization and 3D reconstruction compared with
rotation.

5.2.3 3D Reconstruction

The checkerboard on previous datasets is convenient to com-
pare the proposed method with calibration method, but it
may cause concern that corners on the checkerboard may
provide sufficient and accurate ray–ray correspondences for
self-calibration. Consequently, we further validate the self-
calibration on the datasets without any specific calibration
targets to reconstruct 3D scenes. Considering that there is lit-
tle self-calibration method designed for an LFC, we first use
the Sampson errors of RSHCs to evaluate the effectiveness
of the proposed self-calibration. Table 6 summarizes average
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Table 6 Average ray–ray
correspondences of each light
field pair and mean Sampson
errors (unit: 10−3) for the
estimation of LFC parameters
on the collected datasets

Toy-1 Toy-2 Toy-3 Teemo-1 Teemo-2 Desk

Ray–ray correspondences 9588.5 8134.7 8393.0 9677.2 6775.6 11320.8

Sampson error 2.2913 0.6507 1.6583 1.3778 1.2081 1.5469

Table 7 Intrinsic parameters
estimated by the proposed
method

Toy-1 Toy-2 Toy-3 Teemo-1 Teemo-2 Desk

ki 3.6795e–04 3.2618e–04 3.1994e–04 3.9684e–04 3.9098e–04 3.9820e–04

k j 3.6303e–04 3.2963e–04 3.2811e–04 4.0820e–04 4.1113e–04 4.1058e–04

ku 1.8397e–03 1.6309e–03 1.5996e–03 1.9842e–03 1.9549e–03 2.0618e–03

kv 1.8152e–03 1.6481e–03 1.6405e–03 2.0410e–03 2.0557e–03 2.1204e–03

u0 –0.5100 –0.4528 –0.4327 –0f.5608 –0.4557 –0.5537

v0 –0.3232 –0.3014 –0.3084 –0.3235 –0.3606 –0.3848

ray–ray correspondences of each pair of light fields and the
mean Sampson errors on the collected datasets. The Sampson
distance is a close approximation to the geometric distance
between the ray and its corresponding ray after the trans-
formation established by LFC parameters. Compared with
the algebraic error, it is reasonable to utilize Sampson error
with geometric meaning to represent the distance of ray–ray
correspondences for optimization. As shown in Table 6, the
ultra-small Sampson errors on collected datasets can verify
the effectiveness of the proposed method for the estimation
of LFCparameters. Specifically, we can see that the Sampson
errors of each datasets have fluctuations with the number of
ray–ray correspondences. In addition, Table 7 illustrates the
results of intrinsic parameters estimation, where ki and k j are
also listed. As discussed in Sect. 4.2, since the Euclidean dis-
tance of static scenes is not provided in advance, ki and k j as
the translation between sub-aperture images cannot be esti-
mated but help to constrain the relative translation between
each pair of light fields up to a uniform scaling, so the LFC
self-calibration recovers metric structure. Here, we empiri-
cally set the uniform scale to ku

ki
= kv

k j
= 5, which is the

radius of view points.
In order to further quantify the performance of intrin-

sic and extrinsic parameters estimation, we compared the
output of the proposed self-calibration algorithm with the
traditional stratified self-calibration method provided by
Pollefeys and Van Gool (1999). Considering an LFC can
be considered as a collection of traditional cameras, the
stratified self-calibration treats each sub-aperture image inde-
pendently, not accounting for the special design of the LFC.
We note that a medium collected dataset of 10 light fields
contains 1210 images, which is too large for traditional self-
calibration. Consequently, we only use 3 × 3 sub-aperture
images regularly arranged in the light field to perform strat-
ified self-calibration. Table 8 summarizes the differences of
intrinsic and extrinsic parameters, measured with relative

Table 8 Differences of intrinsic and extrinsic parameters obtained by
the proposed self-calibration method compared with the stratified self-
calibration (Pollefeys et al. 1999) on the collected datasets

Intrinsic Extrinsic
Unit: % Unit: deg

ku kv u0 v0 R t

Toy-1 0.9851 0.9755 2.3192 2.1223 0.8743 4.4863

Toy-2 0.6777 1.7403 1.6828 1.7414 0.7939 6.4364

Toy-3 1.1606 1.2582 2.1606 2.2582 1.2947 4.8382

Teemo-1 0.9148 0.8722 2.0050 1.9277 0.9654 4.5930

Teemo-2 1.0562 1.0343 3.5861 2.1506 1.1100 6.1437

Desk 1.4010 1.3102 2.1171 2.2039 1.1184 6.4707

errors (%) and direction errors (deg) respectively. Since the
stratified self-calibration cannot recover a uniform scaling of
translations directly, we scale the translation between center
sub-aperture images offirst and second light fields to the same
norm with that of the LFC self-calibration method. To fair
comparison with the stratified self-calibration, we perform
the LFC self-calibration from the light fields with the same
view sampling in the experiments of Table 8. Besides, Fig.
10c qualitatively presents the LFC pose comparison between
theLFCself-calibration and the stratified self-calibration.All
results demonstrate the performance of the proposed self-
calibration method.

Once the LFC intrinsic and extrinsic parameters are
obtained, the 3Dmetric reconstruction can be computed. Fig-
ure 10 qualitatively exhibits 3D reconstruction results and
the estimated poses on the collected datasets. The median
point of the reconstructed scene is set as the origin of the
coordinate frame. The rotation and translation of the refer-
ence light field are set to the identity matrix and zero vector,
respectively. Even if the physical magnitude of the scene
is unknown, the relative poses and 3D scene reconstruc-
tion are still estimated with a common scaling. In addition,
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Fig. 10 The central sub-aperture image of the reference light field, 3D metric reconstruction and LFC pose comparison on collected datasets. The
proposed LFC self-calibration (colored solid lines) is compared with stratified self-calibration (colored dotted lines) (Color figure online)
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Table 9 3D reconstructed
points and mean re-projection
errors (unit: pixels) of the
reconstructed structures on the
collected datasets

Toy-1 Toy-2 Toy-3 Teemo-1 Teemo-2 Desk

3D points 924 669 632 2426 1402 3585

Re-projection 0.5984 0.8095 0.9975 1.0488 0.9663 0.7881

Table 9 summaries the number of 3D reconstructed points
and the mean re-projection errors according to the recon-
structed points. We can see that the re-projection errors is
deduced with the increasing 3D points. Specifically, accord-
ing to Table 6, the background on datasets “Toy-1” and
“Teemo-1” could provide more ray–ray correspondences to
reconstruct 3D points. More 3D points for optimization will
help to reduce the re-projection errors. The light fields of
large-scale scenes on dataset “Desk” also extract sufficient
ray–ray correspondences to increase accuracy of reconstruc-
tion, as shown in Tables 6 and 9. Moreover, we can also see
from Fig. 10a that the central sub-aperture image on dataset
“Toy-3” has more noise than the other two datasets “Toy-1”
and “Toy-2” with similar scenes. It is another reason why the
re-projection error on dataset “Toy-3” is larger than datasets
“Toy-1” and “Toy-2”. In summary, all results have verified
the effectiveness of the proposed self-calibration algorithm.

5.3 Limitations

In this part, we analyze the limitations of the proposed
self-calibration algorithm to better understand the utility in
practice. The main limitation of our algorithm is that the
depth range of the scenes is limited due to the ultra-small
baseline of the LFC. The disparity (pixel difference between
neighboring sub-aperture images) which is defined by the
depth of the scene point is also limited. Suppose the scene
points lie at distance larger than 3m from an LFC so that their
disparities are less than 0.1 pixels. This may cause inaccurate
detection of rays in a light field, which is a common failure
mode in methods that use ray–ray correspondences of light
fields to estimate LFC pose. Therefore, when we reconstruct
3D scenes or estimate relative pose using an LFC in practice,
the scene should not be too far from the LFC.

As discussed in Sect. 4.1, if there is no rotation between
two light fields then the ray-space infinity homography can-
not be estimated. This can be seen from Eq. (13), in the case
of pure translation, the ray-space homography decomposes
the ray-space translation homography and ignores the ray-
space infinity homography. Consequently, when we capture
light fields for self-calibration in practice, it is necessary to
have the rotation between two light fields.

6 Closing Remarks

Light field cameras have gained increasing popularity and
have been applied to a wide range of computer vision tasks,
including 3D reconstruction from multiple views. Although
using one single light field fromanLFC, one is already able to
compute a disparity map (despite suffering from very narrow
baselines), recent researches have shown that taking multi-
ple light fields significantly improves the 3D reconstruction
accuracy. For multi-view LFCs, an easy-to-use and accu-
rate self-calibration algorithm specifically designed for an
LFC will be proven handy in practice. We have proposed
in this paper a novel, compact, accurate and stable LFC self-
calibration method, which is to the best of our knowledge the
first of the kind in the literature. More importantly, while it
is a commonly held opinion that self-calibration algorithm is
usually fragile numerically no matter how elegant the theory
is, in this paper we have demonstrated that this is not the case
for the light-field camera, because of the rich redundancies
and regularities presented in the ray-space of LFCs. For the
future work, we will explore the correction of lens distortion
induced by the main lens, whose effect has been neglected
in the present work.
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