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As the supplementary material, we provide detailed
derivation of the ray-space projection model in Sec. 3, the
linear form and cost function in Sec. 4.

1. Equation
Before presenting the material, it helps to go over some

equations involving cross product. If a = (a1, a2, a3)>

is a 3D column vector, one defines a corresponding skew-
symmetric matrix as follows [2]

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (1)

The cross product of two vectors a × b is related to skew-
symmetric matrices according to

a× b = [a]×b = −[b]×a. (2)

Let a, b and c be three vectors in R3. The following asso-
ciative law holds,

a>(b× c) = (a× b)>c. (3)

1.1. Ray-Space Intrinsic Matrix (RSIM)

According to the homogeneous decoding matrix men-
tioned in the submission, we rewrite the decoding matrix
as, 

s = ki i,

t = kj j,

x = ku u+ u0,

y = kv v + v0,

(4)

where (ki, kj , ku, kv, u0, v0) are intrinsic parameters of a
light field camera. Eq. (4) represents the relationship be-
tween the light fieldL(i, j, u, v) recorded by the camera and
the undistorted physical light field L(s, t, x, y). As men-
tioned in the submission, the moment vector and direction
∗The work was supported by NSFC under Grant 61531014.

vector of the undistorted physical ray r = (s, t, x, y) are
defined as,{

m = (s, t, 0)>×(x, y, 1)> = (t,−s, sy − tx)>

q = (x, y, 1)>
, (5)

where (m>, q>)> are the Plücker coordinates of the ray.
Substituting s, t, x, y by Eq. (4), Eq. (5) becomes,

m = (kj j,−ki i, ki i(kv v + v0)− kj j(ku u+ u0))
>

= (kj j,−ki i, kikv(iv − ju) + kiv0 i− kju0 j)
> , (6)

which needs to satisfy the condition ks/kt = ki/kj . Mean-
while, the moment vector n and direction vector p of the
ray l = (i, j, u, v) recorded by the light field camera are
represented as (i, j, 0)> × (u, v, 1)> = (j,−i, iv − ju)>

and (u, v, 1) respectively. Then, the RSIMK is formulated
as,

[
m
q

]
=


kj 0 0 0 0 0
0 ki 0 0 0 0

−kju0 −kiv0 kikv 0 0 0
0 0 0 ku 0 u0

0 0 0 0 kv v0
0 0 0 0 0 1


︸ ︷︷ ︸

=:K

[
n
p

]
. (7)

Fig. 1 illustrates the ray-space intrinsic transformations
Lc = KL and L′c = K ′L′.

1.2. Fundamental Matrix

There are two constraints of the Plücker coordinates in
3D projective space. The one is m> ·q = 0, the other is
generalized epipolar constraint [4],

q′>Eq+q′>Rm+m′>Rq=0,[
m′

q′

]> [
03×3 R>

R> E>

] [
m
q

]
=0

(8)

which is obtained from the theorem that two lines (m, q1)>

and (m2, q2)> are coplanar if and only ifm>1q2+q>1m2 =
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Figure 1. Ray-space projection model and ray-ray transformation
among two light field cameras.

0 . R, t denote the rotation and translation between two
light field cameras coordinates.

According to ray-space intrinsic matrix Eq. (7) and gen-
eralized epipolar constraint Eq. (8), we formulate the ray-
ray transformation {L′}↔{L} as shown in Fig. 1,

L′>K′>
[

03×3 R>

R> E>

]
K︸ ︷︷ ︸

=:F

L = 0. (9)

F is the fundamental matrix. L′>FL = 0 represents the
ray-ray correspondences among two light fields.

1.3. The Relationship between Rays and Planes

According to the theorem [3], a Plücker line (m>, q>)>

insects with a plane in the point with homogeneous coordi-
nate,

X = (π×m− d q) /π>q, (10)

where the plane in 3D space can be expressed by a homo-
geneous vector (π>, d)>, π ∈ R3, d ∈ R. Therefore, a
point Xw in the world coordinates can be described as the
intersection of the ray Lw = (m>w , q

>
w )> with the plane

Z = Zw( i.e. πw = (0, 0, 1)>, dw = −Zw),

Xw = ([πw]×mw + Zwqw)/π>wq. (11)

Then, Eq. (11) is extended by Eq. (1), Xw

Yw

Zw

 =

 0 −1 0
1 0 0
0 0 0

mw +

 Zw 0 0
0 Zw 0
0 0 Zw

 qw.
(12)

Being substituted by Xw

Yw
Zw

 =

 0 0 Xw

0 0 Yw
0 0 Zw

 qw, (13)

Eq. (12) becomes 0 −1 0
1 0 0
0 0 0

mw +

 Zw 0 −Xw

0 Zw −Yw

0 0 0

 qw = 0. (14)

Then, Eq. (14) is simplified as[
1 0 0 0 Zw −Yw

0 1 0 −Zw 0 Xw

]
︸ ︷︷ ︸

=:M(Xw)

[
mw

qw

]
= 0. (15)

1.4. Linear Form for the Calibration

As we have mentioned in the submission, we use the R-
SIM, ray-space extrinsic matrix and Eq. (15) to represent
the relationship between a world point and its rays, i.e.,

M(Xw)

[
R> E>

03×3 R>

]
K

[
n
p

]
= 0, (16)

where K is the RSIM which is abbreviated to a lower tri-
angle matrix Kij and a upper trinangle matrix Kuv . Ac-
cording to an essential assumption that the checkerboard is
on the plane Zw = 0 in the world coordinates, Eq. (16) is
simplified as,[

1 0 −Yw

0 1 Xw

]
︸ ︷︷ ︸

=:Ms

Hs

[
n
p

]
= 0, (17)

whereHs is the simplified ray-sapce projection matrix. We
utilize the direct product operator to compute Hs. Subse-
quently,Hs denotes a 3× 6 matrix only using intrinsic and
extrinsic parameters,

Hs =

 h1 h3

h2 h4

03×3 h5

 =

 r>1 −r>1 [t]×
r>2 −r>2 [t]×
01×3 r>3

[ Kij 03×3
03×3 Kuv

]
,

(18)
where hi denotes the row vector (hi1, hi2, hi3).

h1 = r>1 Kij ,

h2 = r>2 Kij ,

h3 = ([t]×r1)
>Kuv,

h4 = ([t]×r2)
>Kuv,

h5 = r3Kuv.

(19)

Then, we utilize the orthogonality of r1 and r2 and the
Cholesky factorization [1] to obtain the estimated intrin-
sic matrix K̂ij which is determined up to an unknown s-
cale factor. The effect of the scale factor is eliminated by
calculating the ratio of elements. Therefore, we compute
the intrinsic matrix K̂uv . Note that the matrix Hs occur-
ring in Eq. (17) may be changed by multiplication by an
arbitrary non-zero scale factor without altering the projec-
tive transformation. According to the last formula of E-
q. (19) and unit norm of ri, we calculate a scale factor
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Figure 2. The distance between L1 and L2. The common perpen-
dicular L⊥ intersects two lines atX1 andX2 respectively.

τ = 1/||K̂−>uv h
>
5 ||. Adopting Eq. (2) to Eq. (19), it can

be rewritten as,

{
−[r1]×t = τK̂−>uv h

>
3

−[r2]×t = τK̂−>uv h
>
4

. (20)

These equations can be solved by linear least-squares tech-
niques to obtain the translation t, i.e.

t = (G>G)−1(G>g),

G = (−[r1]×,−[r2]×)>,

g = (τK̂−>ij h>3 , τK̂
−>
ij h>4 )

>.

(21)

1.5. Ray-to-Ray Cost Function

In the submission, a ray-to-ray cost function is estab-
lished for non-linear optimization. The ray-to-ray cost is
described as the distance between rays, as shown in Fig. 2.
It illustrates the distance between L1 = (m>1 , q

>
1 )> and

L2 = (m>2 , q
>
2 )>. The lines L1 and L2 are not parallel to

each other. Refereing to Fig. 2, the plane Π containing X2

andm21 is orthogonal to L⊥ and parallel to L1. m21 is the
moment vector of L2 about a pointX1 on L1. This moment
is defined as,

m21 = (X2 −X1)× q2
=m2 −X1 × q2

. (22)

In Fig. 2, α is the angle of rotation from q1 to q2. We can
obtain | sinα| = ||q1 × q2||/(||q1|| · ||q2||). Since m21 ⊥
q2, we drive,

q>1 m21 = ||m21|| · ||q1|| cos(α−
π

2
)

= ||m21|| · ||q1||| sinα|
, (23)

The above yields the distance between L1 and L2,

d = ||X2 −X1|| =
||m21||
||q2||

=
|q>1 m21|

||q1|| · ||q2||| sinα|

=
|q>1 m21|
||q1 × q2||

=
|q>1 (m2 −X1 × q2)|

||q1 × q2||

=
|q>1 m2 − (q1 ×X1)

>q2|
||q1 × q2||

=
|q>1 m2 +m

>
1 q2|

||q1 × q2||

(24)
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