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Abstract. Accurate light field camera calibration plays an important
role in various applications. Instead of a planar checkerboard, we pro-
pose to calibrate light field camera using a concentric conics pattern.
In this paper, we explore the property and reconstruction of common
self-polar triangle with respect to concentric circle and ellipse. A light
field projection model is formulated to compute out an effective linear
initial solution for both intrinsic and extrinsic parameters. In addition,
a 4-parameter radial distortion model is presented considering different
view points in light field. Finally, we establish a cost function based
on Sampson error for non-linear optimization. Experimental results on
both synthetic data and real light field have verified the effectiveness and
robustness of the proposed algorithm.
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1 Introduction

Light field camera [23] captures spatial and angular information of light rays
in the space, which provides multi-view observations of a scene with a single
shot. Sophisticated post-processing techniques [14,22,27,31–33,38,39] ranging
from digital refocusing to depth estimation have been introduced in decades.
It is a crucial step to calibrate light field camera in various applications, such
as registration [16], 3D reconstruction [36,37], light field stitching [1,9,26] and
visual metrology [5,7].

In general, there are three popular types of meta-patterns for camera cali-
bration, which are points, lines and conics. Existing approaches [2,3,6,15,29,30,
34,35] usually utilize checkerboard to detect corner points or line features for
light field camera calibration. However, several open issues still remain. Firstly,
it is difficult to extract accurate locations of corner points due to the effect of
noise and the quality of sub-aperture image. Secondly, considering the fact that
the line feature [2] is detected from micro-lens images in light field raw data
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directly, the low resolution of micro-lens image affects the precision of line fea-
tures. Thirdly, the 12-free-parameter intrinsic matrix proposed by Dansereau
et al. [6] is redundant and dependent which makes it hard to represent the pro-
jection except points.

In this paper, a novel light field camera calibration method is proposed. Com-
pared with point and line, conic has two advantages: one is that conic is well
studied in mathematics and can be simply represented by a 3 × 3 matrix, the
other is that conics can be detected and estimated robustly by existing algo-
rithms. Although conic pattern has been used to calibrate traditional camera
over decades, few attentions are drawn to light field camera calibration. In addi-
tion, several tradition camera calibration methods only consider the estimation
of intrinsic parameters without distortion model and optimization, which is not
appropriate for light field camera. The extrinsic parameters and distortion model
are necessary for distortion rectification and 3D reconstruction. Consequently,
instead of using the checkerboard, we creatively design a concentric conics pat-
tern with known size (i.e. a circle and a ellipse with the same center) for light
field camera calibration. We first exploit the property and reconstruction of self-
polar triangle which is shared by concentric circle and ellipse. In addition, with
the introduction of light field projection model, an effective linear initial solu-
tion for both intrinsic and extrinsic parameters is computed, making use of the
property of common self-polar triangle. Furthermore, considering the effect of
shifted view, a 4-parameter radial distortion model is defined. We present an
effective Sampson cost function for optimization. Finally, we illustrate empirical
performances in calibrating synthetic light field camera as well as commercial
Illum light field cameras [20]. Quantitative and qualitative analyses verify the
effectiveness and robustness of the proposed method.

Our main contributions are:

(1) The property of self-polar triangle which is common to concentric circle and
ellipse is explored.

(2) A creative conics pattern which includes circles and ellipses is designed for
light field camera calibration.

(3) An effective intrinsic and extrinsic calibration algorithm is proposed, includ-
ing a linear initial solution, a 4-parameter radial distortion model for light
field camera and a novel Sampson cost function for optimization.

2 Related Work

Light Field Calibration. Many research groups [2,3,6,15,29,30,34,35] have
explored various light field camera calibration methods making use of the
checkerboard or dot grid pattern in decades, where multiple viewpoints or micro-
lens images are easy to be synthesized to describe the ray. A plane and parallax
framework [30] is proposed to calibrate the camera array system. Johannsen
et al. [15] exhibit metric calibration and depth distortion for the focused light
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field camera [25] through a dot grid pattern with know size. In addition, Thoma-
son et al. [29] focus on geometrical distribution of micro-lens array and estimated
its position and orientation.

Recently, Dansereau et al. [6] propose a light field camera model from a
conventional pinhole lenslet and thin-lens model to calibrate light field camera
through checkerboard pattern. They derive a 12-free-parameter intrinsic matrix
to correspond recorded pixels to light rays in the 3D space (in nonlinear optimiza-
tion, 10 intrinsic parameters and 5 distortion coefficients are finally estimated).
Nevertheless, the calibration method is initialized by a traditional camera cal-
ibration algorithm which is not effective to generate all intrinsic parameters.
More importantly, since the intrinsic matrix has redundancy and dependency,
the decoded rays transformed through intrinsic matrix do not keep regular sam-
pling. Differing from the calibration based on sub-aperture images, Bok et al.
propose to directly extract line feature from the raw data for initial estimation of
intrinsic parameters [2,3]. However, the detectability of line feature plays a cru-
cial role to calibrate light field camera accurately (in practice, the checkerboard
should be shot under an unfocused status in order to make the measurements
detectable).

More recently, Zhang et al. [34] propose a simplified projective model on
the reconstructed scene in the 4D light field. They established light field camera
geometry for calibration by a 4-parameter model. In addition, a parallel bi-planar
dot grid board is designed to provide prior scene points for calibration. This
model just assumes that the image and view planes are Euclidean coordinates
having equal scales in both axial directions. Nevertheless, there is additional
possibility that light field camera contains non-square pixels. For this reason,
unequal scale factors are introduced in each direction to explore the relationship
between the pixels recorded by the camera and the decoded rays in the 3D
space. Zhang et al. [35] propose a multi-projection-center model with 6 intrinsic
parameters for light field camera. A 3D projective transformation is deduced to
describe the relationship between geometric structure and the light field camera
coordinates. Based on the camera model and projective transformation, a light
field camera calibration method is proposed to verify the effectiveness of multi-
projection-center model.

Conics for Calibration. Conic patterns have been utilized in tradition camera
calibration over decades. Quan et al. [24] geometrically propose the invariants
of two coplanar conics through the common self-polar triangle of two concentric
circles. Kim et al. [17] explore the projective properties of the feature consisted
of two concentric circles. They put algebraic and geometric constraints on the
linear combination of two concentric circle images to recover the imaged circle
center and circular points respectively. Previous approaches usually recover the
center of conic and vanishing line in separate steps.

Recently, Huang et al. [12] explore properties of the common self-polar trian-
gle of concentric circles. Making use of these properties, the imaged circle center
and vanishing line of support plane can be recovered simultaneously. These prop-
erties can also be applied to estimate the intrinsic parameters of traditional cam-
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Fig. 1. An illustration of self-polar triangle and common self-polar triangle. o is the
center of conics, and l∞ is the line at infinity. (a) �oab is the self-polar triangle with
respect to C . (b) �oab is the common self-polar triangle with respect to concentric
circle C1 and ellipse C2.

era. In addition, Huang et al. [13] investigate the location features of the common
self-polar triangle of separate ellipses. Then, a novel approach for homography
estimation is proposed. However, these methods only consider the estimation
of intrinsic parameters. Little attention has been paid to estimate and optimize
extrinsic parameters and lens distortion of light field camera based on concentric
conics pattern simultaneously, which are also necessary for camera calibration.
In the work, considering that the conic is well studied in mathematics and easy
to be represented by matrix, we explore the property of concentric conics for
light field camera calibration.

3 Common Self-polar Triangle of Concentric Conics

A point x and conic C define a line l = Cx which is described as pole-polar
relationship [11]. The line l is called the polar of x with respect to C, and the
point x is the pole of l with respect to C.

Self-polar triangle is defined as, just as Fig. 1(a) shown, the vertices of the
triangle are the poles of a conic and their respective polars form its opposite
sides [19,28]. A self-polar triangle which is shared by several conics is what we
called common self-polar triangle, as shown in Fig. 1(b).

Three theorems are illustrated for proving the property of common self-polar
triangle.

• The polar line l = Cx of the point x with respect to a conic C intersects
the conic in two points. The two lines tangent to C at these points intersect
at x.

• If a point x is on the polar of y, then y is on the polar of x.
• The circle has infinite self-polar triangles which are right triangles. These

triangles share one common vertex and the opposite side of this vertex lies on
the same line which are the center of circle and the line at infinity respectively.
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3.1 Property of Common Self-polar Triangle

Property 1. The concentric circle and ellipse have and only have one common
self-polar triangle which is right triangle. The three sides of this common self-
polar triangle are major axis, minor axis and the line at infinity.

Proof. This property is elucidated in Fig. 1(b). Consider the point o denoting
the center of concentric circle C1 and ellipse C2. Then, we obtain pole-polar
relationships (i.e. l∞ ∼ C1o and l∞ ∼ C2o, where ∼ refers to equality up to a
scale) [11]. Obviously, o and l∞ are a common pole-polar which is shared by C1

and C2.
Then, consider a point a on l∞. The polars of a with respect to C1 and

C2 are l1 and l2 respectively which go through the center of concentric conics
(i.e. l1 ∼ C1a, l2 ∼ C2a). Consider l1 and l2 intersecting with C1 and C2 at
points c and d respectively. It is noticed that l1 and l2 intersect at center point
o. According to the theorem mentioned above, �oab is a self-polar triangle and
a right triangle with the assumption that l1 intersects with l∞ at point b.

If �oab is the common self-polar triangle of C1 and C2, then l1 and l2 are
common lines which intersect at b on infinite line. According to the theorem of
self-polar triangle with respect to circle, we have

loa ⊥ lob , lad ⊥ lob , lad ‖ lac ⇒ lac ⊥ lob . (1)

Meanwhile, lac is also the tangent line of ellipse C2 which is orthogonal to lob .
As a result, the line lob is the major or minor axis of ellipse C2.

If loc is the major or minor axis of ellipse C2, then we obtain

lac ⊥ loc , lad ⊥ lod , lad ‖ lac ⇒ loc ‖ lod . (2)

Due to the same point o which is common to l1 and l2, �oab is the only one
common self-polar triangle shared by concentric circle C1 and ellipse C2. ��

3.2 Reconstruction of Common Self-polar Triangle

According to the Property 1, we find that the common self-polar triangle of con-
centric circle and ellipse has three special sides which are major axis, minor axis
and the line at infinity. In addition, one vertex of this common self-polar trian-
gle lies at the center of concentric circle and ellipse. In this section, we propose
a method to reconstruct the only one common self-polar triangle of concentric
circle and ellipse. Without loss of generality, the matrix representations of the
circle C1 and ellipse C2 are

C1 =

⎡
⎣

1 0 −x0

0 1 −y0

−x0 −y0 x2
0 + y2

0 − r2

⎤
⎦ and C2 =

⎡
⎢⎢⎢⎢⎣

1

a2
0 −x0

a2

0
1

b2
−y0

b2

−x0

a2
−y0

b2
x2
0

a2
+

y2
0

b2
− 1

⎤
⎥⎥⎥⎥⎦

, (3)

where the center of concentric conics is o = (x0, y0). The radius of C1 is r, and
the major and minor axes of C2 are a and b respectively.
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The Property 1 substantiates that C1 and C2 only have one common self-
polar triangle. In other words, the concentric circle and ellipse have three com-
mon pole-polars. What is more, we assume that the point x and line l are satisfied
with the pole-polar relationship of C1 and C2 (i.e. l = C1x and l = λC2x, λ is
a scale factor). These relationships can be simplified as,

(
λI − C−1

2 C1

)
x = 0, (4)

where the x is the common pole for C1 and C2. The solutions of Eq. (4) are the
eigenvectors of C−1

2 C1. We obtain

λ1 = a2 ⇐⇒ e1 = (1, 0, 0)� ,

λ2 = b2 ⇐⇒ e2 = (0, 1, 0)� ,

λ3 = r2 ⇐⇒ e3 = (x0, y0, 1)� ,

(5)

where λ1, λ2 and λ3 are three different eigenvalues of C−1
2 C1 and e1, e2 and

e3 are their corresponding eigenvectors. From Eq. (5), the only one common
self-polar triangle of concentric circle and ellipse is reconstructed. The major
and minor axes of ellipse are intersected with infinite line at the eigenvectors
e1 and e2, which represent the direction of major and minor axes respectively.
Due to different λ1 and λ2, the corresponding eigenvectors e1 and e2 are easy to
distinguish for calculating the camera rotation parameters. What is more, the
eigenvector e3 is the center of concentric circle and ellipse.

4 Light Field Camera Calibration

4.1 Light Field Projection Model and Its Coordinates

Light field cameras, especially micro-lens array assembled inside, which are inno-
vated from traditional 2D camera, record the 3D world in different but similar
rays. With the shifted view, light field camera maps the 3D world to many
sub-aperture images. In general, the ray recorded in the 4D light field is param-
eterized in a relative two-parallel-plane coordinates [18], where Z = 0 denotes
the view plane and Z = f for the image plane. According to the multi-projection-
center model [35] which is proposed to describe light field camera, a 3D point
X = (X,Y,Z)� is mapped to the pixel (x, y) in the image plane,

λ

⎡
⎣

x
y
1

⎤
⎦ =

⎡
⎣

f 0 0 −fs
0 f 0 −ft
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

X
Y
Z
1

⎤
⎥⎥⎦ . (6)

In addition, consider Xw denoting the scene point in the world coordinates, the
transformation between world and camera coordinates is described by a rotation
R = (r1, r2, r3) ∈ SO(3) and a translation t = (tx, ty, tz)� ∈ R

3, formulated as
X = RXw + t.

The ray captured by the camera is expressed as p = (i, j, u, v) in term of
pixel dimension, where (i, j) are the absolute indices of the view, and (u, v) are
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the relative pixel indices of sub-aperture image at the view (i, j). The light field
L(i, j, u, v) recorded by the camera is transformed into a normalized (i.e., the
spacing f between two planes is set to unit length for simplicity) undistorted
physical light field L(s, t, x, y) by a homogeneous decoding matrix D ∈ R

5×5

[35], ⎡
⎢⎢⎢⎢⎣

s
t
x
y
1

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

ki 0 0 0 0
0 kj 0 0 0
0 0 ku 0 u0

0 0 0 kv v0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:D

⎡
⎢⎢⎢⎢⎣

i
j
u
v
1

⎤
⎥⎥⎥⎥⎦

=

[
Kij O2×3

O3×2 Kuv

]
⎡
⎢⎢⎢⎢⎣

i
j
u
v
1

⎤
⎥⎥⎥⎥⎦

, (7)

where (ki, kj , ku, kv, u0, v0) are intrinsic parameters of a light field camera.
(ki, kj) are scale factors for s and t axes in the view plane and (ku, kv) for
x and y axes in the image plane respectively. (−u0/ku,−v0/kv) represent the
coordinates of principal point in the sub-aperture image.

4.2 Initialization

The relationship between sub-aperture image pixel (u, v) and 3D world point
Xw is extended by Eqs. (6), (7) and extrinsic parameters [R|t],

(u, v, 1)� ∼ K−1
uv [r1, r2, r3, t − tst]︸ ︷︷ ︸

=:P (s,t)

(Xw, Yw, Zw, 1)�, (8)

where ∼ refers to the equality up to a scale, tst = (s, t, 0)� and (s, t)� =
Kij(i, j)�. Moreover, the projection between the plane at infinity and sub-
aperture image can be described by planar homography H∞ = K−1

uv R. Note
that this projection is independent to the shifted view and the position of light
field camera. Since the absolute conic Ω∞ is on the plane at infinity [11], the
sub-aperture image of absolute conic in light field can be described by the conic
ω = K�

uvKuv. More importantly, u�
a ωub = 0 only if the image points ua and

ub correspond to the orthogonal directions.
Without loss of generality, we assume the conic pattern is on the plane Zw = 0

in the world coordinates. Consequently, Eq. (8) is simplified as,

(u, v, 1)� ∼ K−1
uv [r1, r2, t − tst]︸ ︷︷ ︸

=:H ij

(Xw, Yw, 1)�, (9)

where Hij is the planar homography. Supposing ˜C1 and ˜C2 represent the pro-
jections of concentric circle and ellipse in the sub-aperture image of the view
(i, j), we have

C̃1 ∼ H−�
ij C1H

−1
ij and C̃2 ∼ H−�

ij C2H
−1
ij , (10)

where C1 and C2 are described as Eq. (3) in the world coordinates respectively.
Computing the product ˜C−1

2
˜C1, we obtain

C̃−1
2 C̃1 ∼

(
H−�

ij C2H
−1
ij

)−1 (
H−�

ij C1H
−1
ij

)
= Hij

(
C−1

2 C1

)
H−1

ij . (11)
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As illustrated in Eqs. (5) and (11), ˜C−1
2

˜C1 is the similar matrix of C−1
2 C1,

which means they have the same eigenvalues (i.e., λ1, λ2 and λ3). In addition,
the corresponding eigenvectors can be projected by Hij (i.e., e

(i,j)
k ∼ Hijek,

k = 1, 2, 3). According to the Property 1 and Eq. (5), the only common self-polar
triangle of sub-aperture image is reconstructed. Furthermore, the vanishing lines
and center of concentric ellipse are recovered for light field camera calibration.
More importantly, the major and minor axes (i.e., e

(i,j)
1 and e

(i,j)
2 ) of ellipse in

the sub-aperture image of the view (i, j) imply the rotation of light field camera.
Due to different eigenvalues λ1 and λ2, the corresponding eigenvectors e

(i,j)
1 and

e
(i,j)
2 are easy to distinguish for calculating r1 and r2 respectively.

Based on the theorem that there are infinite right self-polar triangles with
respect to the circle, two self-polar triangles of the circle are randomly formed
to generate the conjugate pairs with respect to ω,

u�
a ωub = 0 ⇐⇒ u�

a K�
uvKuvub = 0, (12)

where ua and ub are the points on the vanishing line. In addition, ua and ub

represent the direction of two cathetuses with respect to self-polar triangle. Once
ω is computed, it is easy to estimate Kuv to obtain intrinsic parameters except
ki and kj by Cholesky factorization [10]. Besides, the rest intrinsic parameters
and extrinsic parameters of different poses can be obtained as follows,

τ =

√√√√1

2

(
r2

|λ
̂C 1

| +
b2

|λ
̂C 2

|

)
, Ĉ1 =

K̂−1
uv C̃1K̂uv

‖K̂−1
uv C̃1K̂uv‖

, Ĉ2 =
K̂−1

uv C̃2K̂uv

‖K̂−1
uv C̃2K̂uv‖

, (13)

⎡
⎢⎢⎢⎢⎣

I3×3 O3×3 O3×5

O3×3 I3×3 O3×5

x0I3×3 y0I3×3

−i 0
I3×3 0 −j

0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r1

r2

t
ki

kj

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

K̂uve
(i,j)
1

‖K̂uve
(i,j)
1 ‖

K̂uve
(i,j)
2

‖K̂uve
(i,j)
2 ‖

τ
K̂uve

(i,j)
3

‖K̂uve
(i,j)
3 ‖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

r3 = r1 × r2, (15)

where ‖ · ‖ denotes L2 norm. K̂uv is derived by intrinsic parameters in Eq. (12).
λ

̂C1
and λ

̂C2
are the smallest eigenvalues of ̂C1 and ̂C2 respectively. τ describes

the scale factor. (x0, y0) is the center of concentric conics in the world coordi-
nates. e

(i,j)
1 , e

(i,j)
2 and e

(i,j)
3 are the eigenvectors of ˜C−1

2
˜C1 on the view (i, j)

corresponding to e1, e2 and e3 depending on different eigenvalues (in Eq. (5)).

4.3 Distortion Model

In light field camera, there exists radial distortion on the image plane and sam-
pling distortion on the view plane because of special sampling design of two-
parallel-plane. In this paper, owing to the assumption that angular sampling is
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ideal without distortion, we only consider radial distortion on the image plane.
The distorted (x̃, ỹ) are rectified by the undistorted (x, y) under the view (s, t),

{
x̃ = (1 + k1r

2
xy + k2r

4
xy)x + k3s

ỹ = (1 + k1r
2
xy + k2r

4
xy)y + k4t

, (16)

where r2xy = x2 + y2 and the undistorted (x, y) are the projected points from
the calibration pattern by intrinsic parameters (ki, kj) and extrinsic parameters
according to Eq. (6). k1 and k2 regulate conventional radial distortion in light
field camera. Compared with existing radial distortion of light field camera, k3
and k4 are added to represent the distortion affected by the shifted view. In
summary, we utilize kd = (k1, k2, k3, k4) to denote distortion vector.

4.4 Non-linear Optimization

The initial solution computed by the linear method is refined via non-linear
optimization. We define a cost function based on Sampson error [11] to acquire
the non-linear solution,

#pose∑
p=1

#conic∑
n=1

#view∑
i=1

∣∣ũ�
i

(P, kd, Rp, tp, Cw,n

)
Ciũi

(P, kd, Rp, tp, Cw,n

)∣∣
2‖(Ciũi (P, kd, Rp, tp, Cw,n) ‖ , (17)

where ũ is the projection of point on Cw,n according to Eqs. (6) and (7), followed
by the distortion according to Eq. (16). Cw,n describes the conics in the world
coordinates as Eq. (3). P and kd represent intrinsic parameters and distortion
vector respectively. Moreover, Rp, tp are extrinsic parameters at each position,
where Rp is parameterized by Rodrigues formula [8]. In addition, the Jacobian
matrix of cost function is simple and sparse. This non-linear cost function can
be solved using Levenberg-Marquardt algorithm based on trust region method
[21]. Matlab’s lsqnonlin is utilized to carry out the non-linear optimization. The
calibration algorithm of light field camera is summarized in Algorithm1.

5 Experiments

5.1 Simulated Data

In order to evaluate the performance of the proposed method, we simulate a
light field camera, whose intrinsic parameters are referred to Eq. (7) (i.e. ki =
1.4e−4, kj = 1.5e−4, ku = 2.0e−3, kv = 1.9e−3, u0 = −0.59, v0 = −0.52).
These parameters are close to the setting of an Illum camera so that we obtain
plausible input close to real-world scenario. Three types of calibration patterns
are illustrated in Fig. 2.

Performance w.r.t. the Noise Level. In this experiment, we employ the
measurements of 3 poses and 7 × 7 views to demonstrate the robustness of cali-
bration algorithm with three types of calibration patterns. The rotation angles
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Algorithm 1. Light Field Camera Calibration Algorithm.
Input: Concentric conics C1 and C2 and projected conics C̃1 and C̃2 in each view.
Output: Intrinsic parameters P = (ki, kj , ku, kv, u0, v0);

Extrinsic parameters Rp, tp(1 ≤ p ≤ P );
Distortion vector d = (k1, k2, k3, k4)

�.
1: for p = 1 to P do
2: for each view (i, j) do

3: Obtain the eigenvectors (e
(i,j)
1 , e

(i,j)
2 , e

(i,j)
3 ) of C̃−1

2 C̃1. � Eq. (11)
4: end for
5: end for
6: Obtain four intrinsic parameters (ku, kv, u0, v0) by Cholesky factorization � Eq. (12)
7: for p = 1 to P do
8: Get extrinsic parameters Rp and tp � Eqs. (13-15)
9: end for

10: Obtain other two intrinsic parameters (ki, kj) � Eqs. (13,14)
11: Initialize distortion coefficient d = (0, 0, 0, 0)�

12: Create the cost function according to intrinsic parameters, extrinsic parameters
and distortion coefficient � Eq. (17)

13: Obtain optimized results using nonlinear LM algorithm
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Fig. 2. Three types of calibration patterns evaluated in experiments (unit: cm). (a)
Two concentric conics. The major and minor axes of ellipse are 13 cm and 7 cm. The
radius of circle is 5 cm. (b) Three concentric conics. The radiuses of big circle and small
circle are 10 cm and 4 cm respectively. The major and minor axes of ellipse are 8 cm
and 5 cm. (c) Two sets of concentric conics. The major and minor axes of ellipse are
8 cm and 5 cm. The radius of circle is 4 cm. The concentric center of right set is (15, 0).

of 3 poses are (−21◦,−14◦, 6◦), (9◦, 5◦, 12◦) and (−12◦, 11◦,−4◦) respectively.
We choose 100 points on each conic image to fit the conics, which are projected
from the calibration pattern by Eq. (6). Gaussian noise with zero mean and σ
standard deviation is added to these points. We vary σ from 0.1 to 1.5 pixels
with a 0.1 pixel step. For each noise level, 150 independent trials are conducted.
The accuracy is evaluated by the average of relative errors with ground truth.
As illustrated in Fig. 3, the errors almost linearly increase with noise level. When
the level of noise is fixed, the relative errors are decreased with the number of
conics. For the noise level σ = 0.5, which is larger than normal noise in practical
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Fig. 3. Performance evaluation of intrinsic parameters on the simulated data with
different levels of noise σ.

calibration, the errors of (ki, kj) and (ku, kv, u0, v0) are less than 0.28% and 0.1%
respectively, which verifies the robustness of the proposed calibration method to
high noise level.

Performance w.r.t. the Number of Poses and Views. In this experiment,
we explore the performance with respect to the number of poses and views based
on the calibration pattern in Fig. 2(a). We also choose 100 points on each conic.
We vary the number of poses from 2 to 8 and the number of views from 3× 3 to
7 × 7. For each combination of pose and view, 100 trails with independent poses
are performed by adding the Gaussian noise with zero mean and a standard devi-
ation of 0.5 pixel. The rotation angles are randomly generated from −30◦ to 30◦.
The average relative errors of calibration results with increasing measurements
are shown in Fig. 4. The relative errors decrease with the number of views once
the number of poses is fixed. Furthermore, the errors reduce with the number
of poses. Especially, when #pose ≥ 4 and #view ≥ 5 × 5, all relative errors are
less than 0.5%, which further exhibits the effectiveness of the proposed method.

5.2 Real Data

The experimental data on real scene light fields are captured by Illum cameras.
Two calibration patterns with different configurations and the number of con-
ics are utilized, including a calibration pattern of two concentric conics (seeing
Fig. 2(a)) for Illum-1 and Illum-2 and a calibration pattern of three concen-
tric conics (seeing Fig. 2(b)) for Illum-3 and Illum-4. The configurations of two
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Fig. 4. Performance evaluation of intrinsic parameters on the simulated data with
different numbers of poses and views.

patterns are also shown in Fig. 2. In the collected datasets, the range does not
exceed 60 cm. A white image which is provided by camera is required for locating
lenslet image centers and correcting vignetting. After the necessary preprocess-
ing described in [6] (including demosaicing, aligning of the lenslet images and
interpolation), the raw 2D lenslet image of light field camera is decoded to a 4D
light field representation (i.e., L(i, j, u, v)).

The Canny edge detector [4] is utilized to detect the conic from sub-aperture
image on the view (i, j). Although the conics appear in all sub-aperture images,
the middle 11 × 11 views are used (15 × 15 views in total) to produce accu-
rate results. Table 1 summarizes the root mean square (RMS) Sampson errors,
as described in Eq. (17), at three calibration stages. Considering the simpleness
of conic detection, the proposed method provides an acceptable initial calibra-
tion performance. Furthermore, it is more important that the Sampson errors
obviously decrease on the item of optimization without distortion, which ver-
ifies the effectiveness of cost function. It is noticed that the proposed method
achieves smaller Sampson errors once the distortion model is introduced in the
optimization. In addition, we compare the proposed method in RMS ray re-
projection and re-projection error with state-of-the-art methods, including DPW
by Dansereau et al. [6] and BJW by Bok et al. [3], as illustrated in Table 2. The
intersections of major and minor axes with conics and the center of conics are uti-
lized to calculate re-projection error and ray re-projection error. As exhibited in
Table 2, the errors of the proposed method are obviously smaller than those of
DPW and BJW. Consequently, such optimization results quantitatively substan-
tiate the effectiveness and robustness of light field calibration using conic pattern.
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Table 1. RMS Sampson errors of initialization, optimizations without and with dis-
tortion (unit: pixel). The (N) denotes the number of light fields used for calibration.

Illum-1 (8) Illum-2 (10) Illum-3 (9) Illum-4 (12)

Initial 5.2401 6.6361 4.1867 5.0426

Opt. w/o distortion 1.1173 1.1081 0.7818 0.7838

Opt. with distortion 0.1746 0.1778 0.2879 0.2889

Table 2. The RMS errors evaluation compared with state-of-the-art methods.

Re-projection error unit: pixel Ray re-projection error unit: mm

Ours DPW [6] BJW [3] Ours DPW [6] BJW [3]

Illum-1 (8) 0.3647 0.5060 0.6084 0.1692 0.2736 0.3443

Illum-2 (10) 0.3805 0.4902 0.6156 0.1788 0.2704 0.3277

Illum-3 (9) 0.4468 0.4591 0.6947 0.2512 0.3007 0.3963

Illum-4 (12) 0.4482 0.4530 0.6780 0.2471 0.2988 0.8336

Table 3. Intrinsic parameter estimation results of our datasets.

Illum-1 Illum-2 Illum-3 Illum-4

ki 4.6247e−04 4.5028e−04 4.5230e−04 4.4933e−04

kj 5.9420e−04 5.7428e−04 4.6485e−04 4.7185e−04

ku 1.0227e−03 1.0541e−03 1.1112e−03 1.1063e−03

kv 1.0174e−03 1.0493e−03 1.1062e−03 1.1019e−03

u0 −0.3095 −0.3283 −0.3563 −0.3532

v0 −0.2282 −0.2318 −0.3511 −0.3478

k1 −0.3820 −0.3685 −0.1885 −0.1819

k2 0.5574 0.5915 −0.8067 −0.8885

k3 1.2206 1.2320 1.4064 1.3972

k4 1.4654 1.4798 1.4242 1.4296

Table 3 shows the results of intrinsic parameter estimation. The results of
Illum-1 and Illum-2 are similar due to the same camera configuration they have.
Moreover, the same configuration of Illum-3 and Illum-4 which is different from
Illum-1 and Illum-2 leads to similar results of intrinsic parameter estimation.
Figure 5 illustrates pose estimation results on our collected datasets.

In order to verify the accuracy of geometric reconstruction of the pro-
posed method compared with baseline methods, we capture a light field of real
scene, then reconstruct several typical corner points and estimate the distances



Common Self-polar Triangle of Concentric Conics 31

between them as illustrated in Fig. 6. The estimated distances between the recon-
structed points are nearly equal to those measured lengths from real objects by
rulers (i.e. Fig. 6(a)). In addition, Table 4 lists the comparisons of reconstruc-
tion results with state-of-the-art methods. The relative errors of reconstruction
results demonstrate the performance of our method.
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Fig. 5. Pose estimation results of our collected light field datasets.

(a) Ruler
142.3753mm

 117.2839mm

(b) Ours
136.2380mm

 103.2810mm

(c) DPW [20]

 119.6786mm

141.7118mm

(d) BJW [24]

Fig. 6. The evaluations of light field measurements. (a) shows distances between 3D
points measured by rulers. (b–d) demonstrate the estimated distances using different
calibration methods.

Table 4. Quantitative comparison of different calibration methods (unit: mm). The
relative error is indicated in parentheses.

Ruler Ours DPW [6] BJW [3]

‘C’ 117.5000 117.2839 (0.2%) 103.2810 (12.2%) 119.6786 (1.9%)

‘V’ 144.0000 142.3753 (1.1%) 136.2380 (5.4%) 141.7118 (1.6%)

6 Conclusion

In the paper, instead of traditional checkerboard, a concentric conics pattern
is designed for light field camera calibration. We firstly explore the property
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of common self-polar triangle on concentric conics and reconstruct this self-
polar triangle. In addition, a light field projection model is utilized to acquire
an effective linear initial solution for both intrinsic and extrinsic parameters,
making use of the property. Finally, a 4-parameter radial distortion model and
a Sampson cost function are defined to non-linearly optimize the 10-parameter
model (6 for intrinsic and 4 for distortion). Qualitative and quantitative analyses
on extensive experiments verify the effectiveness and robustness of the proposed
method. In the future, we intend to concentrate on exploring a unified light
field camera calibration method using different types of calibration patterns.
The future work also includes conducting different conic detection algorithms to
improve the effectiveness of initial solution estimation.
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